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I.1: General Plasma Physics [25 points]

Consider a magneto-electric particle trap in the region −L < z < L. To accomplish
this trap, suppose a magnetic field in the z direction such that

B =

{
B0

(
1 + (R− 1)( z

Lm
)2
)
, if − Lm < z < 0;

B0, if z ≥ 0.

Suppose also an electric potential

φ =


0, if z < 0;

φ0

(
z
Le

)2
, if 0 ≤ z < Le;

φ0, if z > Le.

(a) [4 points] Describe how ions might be trapped in this configuration of magnetic
and electric fields. Would electrons also be trapped in the same fields?

(b) [6 points] Derive a trapping condition for confined particles in terms of the particle
midplane perpendicular energy W⊥0 and midplane parallel energy W‖0, where these
energies are defined at the axial location z = 0.

(c) [2 points] Sketch the trapping condition in W⊥0 −W‖0 space.

(d) [2 points] If trapped ions of charge state q were scattered in pitch-angle, but not
in energy, through collisions, from what end of the device would they leave? How does
this answer depend on the midplane energy coordinates W⊥0 and W‖0? Please explain
very briefly (in one sentence).

(e) [5 points] Suppose now that the electric potential is a varying function of time.
Show that the second adiabatic invariant can be put in the form

W
1/2
‖0 (zM + zE) = const.

Here zM and zE are the turning points in the regions z < 0 and z > 0 respectively.
What are zM and zE in terms of the parameters Le, Lm, R, W⊥0, and W‖0. Define
Wc ≡ qφ0/(R− 1). Show that, if W⊥0/Wc ∼ O(1), then Le � Lm implies ze � zm.

(f) [6 points] Suppose that the length Le(t) slowly changes in time, but assume that
Le(t) � Lm for all t. Show that, if Le(t) is slowly shortened from t = 0 to t = t0,
such that Le(0)/Le(t0) = α > 1, then there is a region in W⊥0 −W‖0 space (where
coordinates are given at t = 0), such that any ions in that region will escape on a
different side of the trap by the time t = t0, than they otherwise would have eventually
escaped by rare but finite pitch angle scattering had the trap potential not been altered
(α = 1). Show that this region is triangular in shape with area

A ' 1

2
(qΦ0)

2
(
1− α−4/3

)2
.

Not so helpful hint: You may wish to use (but you do not really need it) the integral∫ 1

0
((1− s2)1/2 = π/4.
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I.2: Experimental Methods [50 points]

A planar probe is immersed into a weakly collisional steady-state plasma with Max-
wellian electron energy distribution function, cold ions, Te � Ti:

(a) [15 points] Derive the expression for the floating potential of the probe with
respect to the plasma assuming no electron emission from the probe.

(b) [10 points] Consider the floating probe is heated by plasma to temperatures
when it starts to emit electrons. Assume that the temperature of emitted electrons is
negligible compared to the temperature of plasma electrons. Derive the expression for
the floating potential of the electron emitting probe with respect to the sheath-pre-
sheath edge.

(c) [15 points] Show and compare qualitatively, the profiles of the electric potential
between the probe and the plasma, without the electron emission and with a strong
electron emission. Assume a strong electron emission from the wall, i.e., when the
coefficient of the electron emission is about 1.

What are the spatial scales (sizes) of the sheath and the pre-sheath regions compared
to the Debye length?

(d) [10 points] Consider a sweeping bias voltage is applied to the probe. The bias
voltage is swept to get the full probe V − I characteristic. Show qualitative changes
of this characteristic induced by the electron emission due to the probe heating - show
probe V −I’s at different probe temperatures (i.e. different electron emission currents).
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I.3: General Phenomena [40 points]

Consider the Vlasov-Poisson system for electrostatic perturbations in a hydrogen
plasma,

∂f

∂t
+ v · ∂f

∂x
− q

m
∇φ · ∂f

∂v
= 0, (1)

∇2φ = −4πq

∫
fd3v − en0. (2)

Here, q = −e is the charge of electrons, f is the distribution of electrons in phase space
and n0 = const. is the density of the motionless background ions.

(a) [15 points] Define

Q ≡
∫ [∫

1

2
mv2fd3v +

∫
G(f)d3v +

1

8π
(∇φ)2

]
d3x.

Prove that Q is a constant of motion, i.e.,

dQ

dt
= 0. (3)

Here, v = |v| and G(f) is any well-behaved function of f.

(b) [3 points] What is the physical meaning of Eq. (3) when G(f) = 0?

(c) [4 points] Does the Vlasov-Poisson system (1)-(2) admit a local energy conserva-
tion law in the form of

∂E

∂t
+∇ ·P = 0?

why?

(d) [10 points] Consider a small amplitude (linear) perturbation of the system relative
to a homogeneous equilibrium specified by

f0 = f0(v), φ0 = 0.

Let
δf = f − f0, δφ = φ.

Using the fact Q is a constant of motion (3), show that∫
−1
∂f0
∂H

(δf)2 d3vd3x +
1

8π

∫
(∇δφ)2 d3x = const., (4)

where H ≡ 1
2
mv2. (Hint: Taylor-expand Q for small δf and δφ and select a proper

G(f) such that the first order Q vanishes. If you can show it without using Q = const.,
that will be fine too.)

(e) [8 points] Using Eq. (4), show that if f0(H) is a monotonically decreasing function
of H, all linear perturbations of the system are stable.
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I.4: Irreversible Processes [50 points]

This problem concerns a particular Chapman–Enskog expansion of the ion kinetic equa-
tion for a magnetized, weakly collisional plasma. Mathematical formulae of possible
utility are provided at the end of the problem.

To answer all of the following questions, you will need the Vlasov–Landau kinetic
equation governing the time evolution the ion distribution function fi. Written in a
frame co-moving with the ions’ mean velocity ui = ui(t, r), that equation is

∂fi
∂t

+
(
ui + w

)
·∇fi +

(
∇pi
mini

+
∇·Πi

mini

−w ·∇ui + w×Ωib̂

)
· ∂fi
∂w

= Cii[fi] + Cie[fi] +
Rie

mini

· ∂fi
∂w

, (1)

where w ≡ v − ui is the “peculiar” velocity relative to the mean velocity, fi =
fi(t, r,w), and b̂ ≡ B/B is the unit vector in the direction of the magnetic field
B = B(t, r). The other symbols have their usual meanings: mi is the ion mass,
ni is the ion number density, pi = niTi is the (isotropic) ion thermal pressure with
Ti ≡ miv

2
thi/2 being the ion temperature and vthi being the ion thermal speed, Πi is

the ion viscous stress tensor, and Ωi ≡ ZeB/mic is the ion Larmor frequency with
Ze being the ion charge. The collision operator on the right-hand side of equation (1)
takes into account both ion–ion collisions (Cii) and ion–electron collisions (Cie), each
occurring a rate proportional to their respective (mass-dependent!) collision frequen-
cies, νii and νie. The final term on the right-hand side accounts for the friction force
on the ion fluid due to collisions with electrons, denoted Rie. To simplify the ensuing
calculations, assume Maxwellian electrons with mass me � mi so that, to leading order
in the mass ratio,

Cie[fi] +
Rie

mini

· ∂fi
∂w

= νie
∂

∂w
·
(
wfi +

Te
mi

∂fi
∂w

)
, (2)

where Te is the electron temperature. You are also given that Cii and Cie satisfy
Boltzmann’s H theorem and that, in field-aligned coordinates in which w = w‖b̂+w⊥,

∂

∂w
= b̂

∂

∂w‖
+

w⊥
w⊥

∂

∂w⊥
− w× b̂

w2
⊥

∂

∂ϑ
,

where ϑ is the gyrophase.

(a) [15 points] Order the dimensionless parameters that appear in equation (1) as
follows:

ui
vthi
∼
√
me

mi

∼
∣∣∣∣TeTi − 1

∣∣∣∣ ∼ ρi
L
∼ λii

L
≡ ε� 1, (3)

where ρi ≡ vthi/Ωi is the ion Larmor radius, λii ≡ vthi/νii is the ion–ion collisional
mean free path, and L is the characteristic scale of the macroscopic gradients in the
plasma. Expand the ion distribution function as fi = fi0 + εfi1 + ε2fi2 + . . . and write
down the lowest order in ε at which each term of equation (1) enters relative to νiifi0
(e.g., Cii[fi] enters at O(1) relative to νiifi0). Clearly justify each of your orderings.

- Problem continued on next page -
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(b) [5 points] Use your answer to (a) to write down an equation that is valid at O(1).
Solve this equation to show that

fi0 = fM,i ≡
ni

π3/2v3thi
exp

(
− w

2

v2thi

)
, where w = |v − ui| and v2thi ≡

2Ti
mi

. (4)

What constraints must fi1 and fi2 satisfy so that the parameters ni, ui, and Ti in
equation (4) are the true time- and space-dependent number density, mean velocity,
and temperature of the ions?

If you could not do part (a), then provide physical arguments why fi0 ought to be
gyrotropic and Maxwellian, and answer the above question about constraints.

(c) [5 points] Use your answer to (a) to write down an equation that is valid at O(ε).
In what way(s) is your equation different from that obtained at O(ε) in Braginskii’s
expansion for the ions? Why?

If you could not do part (a), then explain how the ordering (2) differs from Braginskii’s.

(d) [10 points] Solve your O(ε) equation for fi1. To keep things relatively simple, let
Cii[fi] = −νii(fi − fM,i) and adopt the subsidiary ordering

ρi
λii
∼ νii

Ωi

∼ L⊥
L‖
� 1, (5)

where L⊥ (L‖) is the characteristic scale of the macroscopic gradients oriented across
(along) the local magnetic-field direction.

Hint: Split fi1 into its gyro-averaged part, 〈fi1〉ϑ, and its gyrophase-dependent part, f̃i1.

(e) [15 points] Use your answer to (d) to compute the leading-order expression for
the ion heat flux qi. Briefly explain what each component of qi represents physically.

If you could not do part (d), then state how you would compute qi given fi1, and provide
physical arguments that anticipate the form of qi.

Possibly useless information:

〈w〉ϑ = w‖b̂, 〈ww〉ϑ = w2
‖b̂b̂ +

w2
⊥

2
(I− b̂b̂),

∂w⊥
∂ϑ

= −w× b̂,
∂(w× b̂)

∂ϑ
= w⊥,

(I× b̂) ·∇ = b̂×∇, where I is the unit dyadic.

∫ ∞
0

dx xk e−x ≡ Γ(k + 1)
(

= k! for integer k ≥ 0
)

Γ

(
1

2

)
=
√
π, Γ

(
3

2

)
=

1

2

√
π, Γ

(
5

2

)
=

3

4

√
π, Γ

(
7

2

)
=

15

8

√
π, Γ

(
9

2

)
=

105

16

√
π
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I.5: Applied Math Quickie [15 points]

Develop a leading order (in ε) uniform approximation to the non-linear differential
equation

ε
d2y

dx2
+ 3 (tan(x))2

(
dy

dx

)2

− (tan(x))2 y4 = 0 (1)

with the boundary conditions y(0) = 0 and y(
√

3) = 1, using the layer matching for
0 < ε� 1. Assume the layer at x = 0 and no rescaling needed for y.

Use the following expansion and formula as needed.

tan(x) = x+
x3

3
+

2x5

15
+ · · · for |x| < π

2
,∫ ∞

0

xm

xn + an
dx =

πam−n+1

n sin
(
m+1
n
π
) for 0 < m+ 1 < n.
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DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II

May 12, 2020

9:00 a.m. – 2:00 p.m.

• Today’s exam (Part II) contains 6 problems on 2-8 pages. Answer all problems.

• Today’s exam has been designed to require three hours of work (180 points).
However, you are allowed two extra hours, so the total time allotted for today is
five hours. The scores on the questions will be weighted in proportion to their
allotted time.

• Start each numbered problem on a new page. Put your name and the question
number on each page.

• When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do
not attempt a particular problem, write on the booklet “I have not attempted
Problem ” and sign your name.

• All work on this examination must be independent. No assistance from other
persons is permitted.

• An NRL formulary is permitted. No other aids (books, calculators, etc.) are
allowed.
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II.1: Wave Quickie [15 points]

Consider magnetized electron–ion plasma with negligible perpendicular temperature.
Assume that the magnetic field is parallel to the z axis and consider perturbations with
wave vectors k = (k⊥, 0, k‖). As you may remember, the dielectric tensor in this case
has the same general structure as in cold plasma,

ε ≈

 S̄ −iD̄ 0
iD̄ S̄ 0
0 0 P̄

 . (1)

(a) [3 points] Assuming the electrostatic approximation, show that the wave disper-
sion relation in this case can be expressed as follows:

k2
⊥S̄ + k2

‖P̄ ≈ 0. (2)

(b) [12 points] Assume that ions are cold and the wave frequency ω is close enough
to the ion cyclotron frequency so that S̄ is determined entirely by the ion contribution.
Also assume Cs � ω/k‖ � vTe and kλDe � 1, where Cs is the ion-sound speed, vTe =√
T‖,e/me, T‖,e is the electron parallel temperature, and λDe is the corresponding Debye

length. Based on what you remember from fluid theory, present the corresponding
approximations of S̄ and P̄ . Then, show that Eq. (2) leads to

ω2 ≈ Ω2
i + k2

⊥C
2
s , (3)

which is known as the dispersion relation of electrostatic ion cyclotron waves.

Hint: Note that unlike Eq. (2), Eq. (3) does not contain k‖.
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II.2: Experimental Quickie [15 points]

Inertial Fusion plasma is confined by transiently compressing the fuel pellet. The
radius, R, of the fuel pellet is compressed inward to the center at the sound speed, Cs.
The radius during the inward compression is expressed as

R(t) = R0 − Cst

R0 is the fuel radius at time t = 0. The time needed for compression is ∼ T0 = R0/Cs.

(a) [10 points] Determine the expression for required confinement time, τ , needed for
inertial fusion from the integral, τ =

∫
V (t)/V0dt, where the integral is from t = 0 to

t = T0 = R0/Cs. V (t) is the volume of the fuel pellet as a function of time, and V0 is
the initial volume of the fuel pellet at t = 0.

(b) [5 points] If the sound speed for compression conditions is Cs = 108cm/s and the
fuel radius is 0.5mm, what is the confinement time, τ?
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II.3: MHD [45 points]

In this problem, you will be asked to derive minimum energy states under certain
assumptions.

(a) [5 points] The total electromagnetic energy in a volume, V , is given by

W =

∫ (
B2

2µ0

+
ε0E

2

2

)
dV, (1)

where B is magnetic field and E is electric field. Explain why we usually drop the
electric field energy in W in MHD. When should we keep it? In the following questions,
we will drop the electric field energy in W .

(b) [5 points] When a static ideal MHD plasma in V is perturbed by a small velocity
δV ≡ dξ/dt where ξ is the displacement, show that the perturbed magnetic field is
given by δB ≡ ∇× (ξ ×B).

(c) [10 points] Assuming that ξ vanishes on the boundary of V , show that the condi-
tion for the perturbed magnetic energy to vanish for any ξ leads to a force-free minimum
energy state where j×B = 0.

Hint: you can use ∇·(a×b) = b·(∇×a)−a·(∇×b) and a·b×c = a×b·c = b·c×a.

(d) [15 points] Derive another force-free minimum energy state by using variational
principle with a Lagrange multiplier to minimize W while keeping the total magnetic
helicity constant: K =

∫
A ·BdV , where A is vector potential of B.

Hint: express the variation of W and K in terms of δA which needs to satisfy the
conditions assumed for ξ on the boundary of V .

(e) [5 points] What is the difference between these two force-free fields?

(f) [5 points] Why are the force-free states not necessarily preferred for plasma con-
finement?
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II.4: Elementary Physics Quickie [15 points]

Statement: X-rays are emitted by plasmas.

(a) [5 points] When is this not true or at least at a far lower level of Bremsstrahlung
power emitted compared to that in the NRL formulary,

PBremss = 1.69× 10−32neT
1/2
e Zeff(W/cm3)?

Hint: One answer comes from considering the plasma composition.

(b) [5 points] Sketch X-ray spectra, from 0.5 to 2 keV, emitted by

• Pure hydrogen plasma with a Te = 0.2keV Maxwellian electron distribution.
Assume the ions are isothermal.

• A nearly identical Te = 0.2keV hydrogen plasma contaminated with 1% oxygen
(nO/nH). Again, assume the ions are isothermal.

(Assume the ions’ charge state is in coronal equilibrium and the plasma is “transpar-
ent”, i.e., of appropriately small size and low density.)

(c) [5 points] What are the benefits/drawbacks of a solid-state (pulse-height) detector
compared to a grating spectrometer (iCCD-equipped)?
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II.5: Applied Math [40 points]

A two-fluid MHD theory on a tokamak resonant layer under a perturbation leads to
an equation

dy

dx
− Fx2y = 0 (1)

in a simplified geometry, for various parametric regimes such as the resistive-inertial
or Hall-resistive regime (A. Cole, 2006). The F depends on many parameters such as
electron flow or temperature at the layer. Let F be real and positive for simplicity.
The question is to determine the so-called ∆ parameter which is the ratio of the two
leading terms in small x limit of an exponentially decreasing solution in large x limit.
Specifically,

lim
x→+0

y(x) ∼ y0

(
1−∆x+O(x2)

)
, where lim

x→+∞
y(x)→ 0. (2)

Here we will solve the ∆ analytically as a function of F , with the following steps.

(a) [8 points] Find the asymptotic leading behavior of the two linearly independent
solutions to y as x→ +∞.

(b) [12 points] Obtain an integral representation of the solutions using the Fourier-
Laplace Kernel, with a factor representing the dominant exponential behavior in large

x limit, i.e. y = e
1
2

√
Fx2 ∫

C
eixtf(t)dt.

(c) [10 points] Find a contour path of the integral in (b) that gives the exponentially
decreasing characteristics for x→ +∞.

(d) [10 points] Expand the contour integral in (c) for small x limit and evaluate the
two leading terms in the series to show

∆ = 2F 1/4 Γ(3/4)

Γ(1/4)
. (3)

Hint: Deform the contour path for (c) to the real-axis and split the integral to have a
representation with

∫∞
0

. Note that Γ(z) ≡
∫∞

0
tz−1etdt for Re (z) > 0.
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II.6: Waves and Instabilities [50 points]

Here, you are asked to study wave propagation in the Earth’s ionosphere. Assume that
the ionospheric plasma is collisionless, ions are immobile, and the Earth’s curvature is
negligible.

(a) [10 points] Assume the cold-plasma approximation and neglect the Earth’s mag-
netic field. At some altitude (∼ 300 km), the electron density has the maximum value
nmax = 106 cm−3. Suppose an antenna located on the ground and emitting radiation
with frequency f = 12 MHz at some angle α with respect to the vertical. At what α
will this radiation be reflected back to the Earth?

Hint: Reflection occurs when the vertical group velocity becomes zero. How does the
horizontal wave number, k‖, and the frequency evolve along the rays?

Now, consider the influence of the Earth’s magnetic field B0, assuming it is homoge-
neous and parallel to the ground. Suppose k = (k⊥, 0, k‖), where x is the vertical axis
and the z axis is along B0. The following formulas may be of use, if you know what
they mean:

S,D =
1

2
(R± L) R,L = 1−

ω2
ps

ω (ω ± Ωe)
, P = 1−

ω2
p

ω2
,

(S sin2 θ + P cos2 θ)N4 − [RL sin2 θ + PS(1 + cos2 θ)]N2 + PRL = 0,

tan2 θ = − P (N2 −R)(N2 − L)

(N2S −RL)(N2 − P )
.

(b) [10 points] In magnetized electron plasma, waves can experience reflection at three
different locations corresponding to three different values of X ≡ ω2

p/ω
2. Find these

values X1,2,3 as functions of Y ≡ |Ωe|/ω and N‖ ≡ ck‖/ω 6= 0. Assuming 0 < Y < 1
and N2

‖ 6= 1, show that there is exactly one value of N2
‖ , termed N̄2

‖ (Y ), at which two

of the reflection points coincide. Calculate N̄2
‖ (Y ) and the corresponding value of X.

(c) [15 points] Show that N⊥ ≡ ck⊥/ω satisfies aN4
⊥ + bN2

⊥ + c = 0, where a, b, and
c depend on X. Find a(X) and outline how to find b(X) and c(X). Without solving
this equation, sketch N2

⊥(X) at fixed N2
‖ for N2

‖ ≷ N̄2
‖ and N2

‖ = N̄2
‖ . You may use

b2 − 4ac =

(
XY

1− Y 2

)2 [
Y 2(N2

‖ − 1)2 − 4(X − 1)N2
‖
]
.

Hint: Consider N‖ = 0 first, for which case N2
⊥(X) should be easy to find. (What are

the two modes in this regime?) Then, consider how the plot is modified for N‖ 6= 0 by
analyzing N2

⊥(0), cutoffs, resonance(s), and the number of real roots for N2
⊥.

- Problem continued on next page -
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(d) [15 points] Now consider N⊥ in regions where it is real. Sketch N⊥(X) corre-
sponding to your sketches of N2

⊥(X) in part (c). (Remember to plot both N⊥ > 0
and N⊥ < 0.) Using these results, explain the dependence of the field pattern on
the launch angle α in the figure below. (Ignore the specific numbers and focus on
qualitative physics.)

FIG: The absolute value of the wave electric field |E(x)| (horizontal axis)
versus the altitude x (vertical axis, in km) for a standing wave launched
from the ground (x = 0) at different angles α (numbers on top) between k
and the vertical. The figure is adapted from a research paper; the reference
is omitted on purpose.
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