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• Today’s exam (Part I) contains 6 problems on pages 2–8. Attempt all problems.

• Today’s exam has been designed to require three hours of work (180 points).

However, you are allowed two extra hours, so the total time allotted for today is

five hours. The scores on the questions will be weighted in proportion to their

allotted time.

• Start each numbered problem on a new page. Put your name and the question

number on each page.

• When you do not have time to put answers into forms that satisfy you, indicate

specifically how you would proceed if more time were available. If you do

not attempt a particular problem, write on the booklet “I have not attempted

Problem ” and sign your name.

• All work on this examination must be independent. No assistance from other

persons is permitted.

• An NRL formulary is permitted. No other aids (books, calculators, etc.) are

allowed.
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I.1: General Plasma Physics [40 points]

(a) [6 points] Derive the trapping condition in midplane (z = 0) energy coordinates

for ions in a magnetic mirror machine with mirror ratio R
.
= Bmax/Bmin and mirror

axis in the z direction.

(b) [2 points] Sketch the trapping condition in the W?0–Wk0 plane, where W?0 (Wk0)

is the perpendicular (parallel) energy as the midplane is crossed.

(c) [4 points] Suppose that the magnetic field near the axis can be approximated as

B =

(
B0 (1 + z2/L2

) ẑ if z2/L2 < c2,

B0 (1 + c2) ẑ if z2/L2
� c2,

where c is a constant. Show that the turning points ±zT for trapped ions obey z2
T
/L2

=

Wk0/W?0.

Suppose now that the mirroring particles are in an axial gravitational field, �gẑ.

(d) [4 points] Write and sketch the new trapping condition in midplane (z = 0)

energy coordinates.

(e) [4 points] Derive the new turning points, defining the high turning point as zH
and the low turning point as zL. Express zH and zL in terms of zT and zg, where
zg

.
= mgL2/W?0. Show that trapped particles always cross the midplane.

Suppose now that the axial gravitational field is not constant, but instead increases

very slowly in time from zero at time t = 0 to a finite value g at time t = tf . (Hint: It
might be convenient to write the parallel energy as a function of W?0, zH, zL and z.)

(f) [2 points] What is the change in the perpendicular midplane energy W?0?

(g) [8 points] What is the change in the parallel midplane energy Wk0? You might

find the following integral useful:

Z b

a

ds
⇥
(s� a)(b� s)

⇤1/2
=

⇡

8
(b� a)2.

(h) [6 points] Write down the condition (in terms of the initial, t = 0, W?0 and Wk0
coordinates) for particles that are initially trapped but then detrapped. If there is a

region in W?0–Wk0 space containing any such particles, what is the minimum W?0 and

the minimum Wk0 bounding this region?

(i) [4 points] Suppose instead that the axial gravitational field starts o↵ at value g
at time t = 0, and then decreases very slowly in time to zero at time t = tf . Write

down the condition (in terms of the initial W?0 and Wk0) for particles that are initially

trapped but then detrapped. If there is a region in W?0–Wk0 space containing any such

particles, what is the minimum W?0 and the minimum Wk0 bounding this region?
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I.2: Waves Short Problem [15 points]

Consider a collisionless one-dimensional electron plasma with stationary ions. Assume

that the background electron distribution has the form f0(v) = F (v2) with F 0
(") < 0

for all ".

(a) [7 points] Assume a perturbation to the electron distribution of the form ef /

exp(�i!t + ikx). Using the linearized Vlasov equation and Ampere’s law, derive the

dispersion relation for electrostatic oscillations of this form.

(b) [8 points] Discretize the velocity space intoN intervals of length�v, each centered

about v = va with a = 1, 2, . . . , N . Show that the dispersion relation derived in part

(a) can be written as

! =

NX

a=1

g2a
! � kva

with g2a > 0.

Argue that all solutions for !(k) are real. Where is Landau damping in this model?
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I.3: MHD Short Problem [15 points]

A small-amplitude, linearly polarized Alfvén wave of amplitude B? and wavenumber

k > 0 propagates along a uniform magnetic field B0ẑ through an otherwise stationary,

uniform, ideal-MHD plasma. The magnetic field and fluid velocity are given by

B = B0ẑ +B? sin[k(z � vAt)] x̂ and u = �vA
B?

B0

sin[k(z � vAt)] x̂,

respectively, where vA
.
= B0/

p
4⇡⇢ is the Alfvén speed.

(a) [9 points] Neglecting terms of order B2

? and higher, compute the current density

j
pol

associated with the particles’ polarization drift in this wave and show that it is

equal to the total current density from Ampère’s law, j = (c/4⇡)(r⇥B).

(b) [6 points] There is also a current associated with the curvature drift, equal to

j
curv

=
ckB?

4⇡

4⇡p

B2

0

cos[k(z � vAt)] ŷ,

where p is the thermal pressure. If j
pol

= j, then what balances j
curv

? Prove it.
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I.4: Irreversible Processes [55 points]

This problem revisits the Spitzer–Härm problem of calculating the electrical conductiv-

ity � of a collisional, electron–ion plasma, only this time it’s for a magnetized plasma

in which the conductivity is a tensor, �. Mathematical formulae of possible utility are

provided at the end of the problem. Attempt all parts! Partial credit may be earned!

For example, note that you can answer parts (d)–(f) without even attempting (a)–(c).

A constant, uniform electric field E = Ekb̂+E? is applied to a quasi-neutral, electron–

ion plasma threaded by a constant, uniform magnetic field B = Bb̂. In steady state,

the kinetic equation describing the electron distribution function fe = fe(v) then reads

�

✓
eEk

me
b̂+

eE?

me
+ ⌦ev⇥ b̂

◆
· @fe
@v

= C[fe], (1)

where ⌦e
.
= eB/mec. The notation is standard: e is the electric charge, me is the

electron mass, c is the speed of light, and v is the velocity-space coordinate. In what

follows, neglect any ion motion and take the collision operator on the right-hand side

of equation (1) to be the Lorentz operator describing electron–ion collisions:

C[fe] =
⌫(v)

2


@

@⇠
(1� ⇠2)

@

@⇠
+

1

1� ⇠2
@2

@�2

�
fe

.
= ⌫(v)L[fe] with ⌫(v)

.
=

3
p
⇡

4⌧ei

✓
vthe
v

◆3

,

(2)

where vthe
.
= (2Te/me)

1/2
is the electron thermal speed for temperature Te, ⌧ei is the

electron–ion collision timescale, and v = vkb̂+v? = v⇠ b̂+v
p

1� ⇠2 (cos� x̂+sin� ŷ)

with x̂⇥ ŷ = b̂.

(a) [8 points] Write down the definition of the Dreicer field ED. Then order the

dimensionless parameters that appear in equation (1) as follows:

E?

ED

⇠
Ek

ED

.
= ✏ ⌧ 1, ⌦e⌧ei ⇠ 1.

Expand the electron distribution function in powers of ✏ as fe = fe0+ ✏fe1+ ✏2fe2+ . . .
and write out equation (1) at O(1) and O(✏) relative to ⌦efe0. Use your O(1) equation

to prove that fe0 is isotropic in velocity space, i.e., fe0 = fe0(v).

(b) [21 points] Solve your O(✏) equation for fe1. In doing so, follow Braginskii and

conduct a subsidiary expansion in �
.
= (⌦e⌧ei)�1

⌧ 1 to determine fe1 out to O(✏�2fe0).

Hints: Split fe1 into a gyro-averaged part, hfe1i�, and a gyrophase-dependent part, efe1.
You may also find it simpler to orient b̂ = ẑ and E? = E?x̂ without loss of generality.

Because fe0 is isotropic (see part a), your answer should be proportional to dfe0/dv.

(Problem continues on next page.)
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Question I–4, continued

(c) [12 points] Now take fe0 to be Maxwellian,

fe0(v) =
ne

⇡3/2v3
the

exp

✓
�

v2

v2
the

◆
,

and use your answer from part (b) to show that the parallel current density is given by

jk =
32

3⇡
�Ekb̂, (3)

where �
.
= e2ne⌧ei/me.

If you could not do part (b), then state how you would compute jk given fe1 and explain

which part of fe1 contributes to jk and why.

(d) [4 points] If you were to use the full Landau collision operator for C[fe] instead
of just the Lorentz operator given by equation (2), would the resulting coe�cient on jk
in equation (3) be larger or smaller than 32/3⇡ ' 3.40? Briefly explain your answer.

(e) [4 points] The complete expression for the current density j obtained from fe1 is

j
.
= jk + j⇥ + j? =

32

3⇡
�Ekb̂�

�

⌦e⌧ei
E⇥ b̂+

�

(⌦e⌧ei)2
E?

.
= � ·E. (4)

In words, the electrical conductivity of a magnetized plasma is a tensor that is biased

with respect to the magnetic-field direction. Use random-walk arguments to explain

physically why j? ⇠ jk(⌦e⌧ei)�2
⌧ jk.

(f) [6 points] The “⇥” conductivity, viz. �⇥
.
= �/(⌦e⌧ei) = enec/B, is independent

of collisions. In a few sentences or using a diagram, explain what physics causes �⇥.

Possibly useless information:

for (vk, v?,�) coordinates,
@

@v
= b̂

@

@vk

����
v?,�

+
v?

v?

@

@v?

����
vk,�

�
v⇥ b̂

v2?

@

@�

����
vk,v?

hvi� = vkb̂, hvvi� = v2kb̂b̂+
v2?
2
(I� b̂b̂)

@v?

@�
= �v⇥ b̂,

@(v⇥ b̂)

@�
= v?,

@v?

@⇠
= �

⇠

1� ⇠2
v?

A · (B⇥C) = B · (C⇥A) = C · (A⇥B), A · (B⇥ I) = A⇥B

Z 1

0

dx xk
e
�x .

= �(k + 1)
�
= k! for integer k � 0

�

�

✓
1

2

◆
=

p
⇡, �

✓
3

2

◆
=

1

2

p
⇡, �

✓
5

2

◆
=

3

4

p
⇡, �

✓
7

2

◆
=

15

8

p
⇡

L[P`(⇠)] = �
`(`+ 1)

2
P`(⇠), P0(⇠) = 1, P1(⇠) = ⇠, P2(⇠) =

1

2
(3⇠2 � 1)
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I.5: Applied Math Short Problem [15 points]

Consider a harmonic oscillator where the frequency ⌦(t) is changing slowly:

d
2y

dt2
+ ⌦

2
(t)y = 0. (1)

(a) [10 points] Find a leading-order asymptotic solution appropriate to the slowly

changing frequency. How slow should it be in order to justify your solution?

(b) [5 points] Show that the action integral of this nearly periodic motion,

J =

I
dy

dy

dt
, (2)

is proportional to E/⌦, where E is the total energy of the system.
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I.6: Experimental Methods [40 points]

The following questions on experimental methods are grouped into two parts. Attempt

both parts.

Part I: Probes. A floating planar probe is immersed into a weakly collisional, steady-

state, low-temperature plasma whose electrons have a Maxwellian energy distribution

with temperature Te. Take the ions to be cold, with temperature Ti ⌧ Te.

(a) [20 points] The probe is heated to temperatures at which it starts to emit elec-

trons. Assume that the temperature of the emitted electrons is negligible compared to

the temperature of the plasma electrons. Derive an expression for the floating potential

of the electron emitting probe with respect to the sheath–pre-sheath edge.

(b) [5 points] A sweeping bias voltage is applied to the probe. The bias voltage is

swept to get the full probe V –I characteristic. Provide a qualitative sketch of this char-

acteristic at di↵erent probe temperatures (and therefore di↵erent electron emission) to

show how the probe emission a↵ects the V –I curve.

Part II: Thomson scattering.

(c) [10 points] Derive the Thomson scattering cross-section in the non-collective

regime. You are given the Larmor formula for power radiated by an accelerated charge,

Prad =
1

4⇡✏0

2

3

q2

c3
v̇2.

(d) [5 points] Calculate the fraction of photons incoherently scattered from a 1 cm

path length of laser beam o↵ a plasma with an electron density of 2 ⇥ 10
20

m
�3

into

a solid angle of detection of 0.01 sr. Useful constant: the classical electron radius

re ' 2.8⇥ 10
�15

m.
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However, you are allowed two extra hours, so the total time allotted for today is
five hours. The scores on the questions will be weighted in proportion to their
allotted time.

• Start each numbered problem on a new page. Put your name and the question
number on each page.

• When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do
not attempt a particular problem, write on the booklet “I have not attempted
Problem ” and sign your name.

• All work on this examination must be independent. No assistance from other
persons is permitted.

• An NRL formulary is permitted. No other aids (books, calculators, etc.) are
allowed.
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II.1: General Plasma Physics [30 points]

Consider the electrostatic dynamics in a plasma governed (strictly) by the Vlasov–
Poisson equations

@fs
@t

+ v ·rfs �
qs
ms

r' · @fs
@v

= 0, (1)

r2' = �4⇡
X

s

qs

Z
d3v fs. (2)

(a) [1 point] The total energy E of the system is defined as

E
.
=

Z
d3r E ,

E
.
=

X

s

Z
d3v

1

2
msv

2fs +
1

8⇡
|r'|2 .

What is the physical meaning of E ?

(b) [5 points] Show that the total energy of the system is conserved, i.e.,

dE

dt
= 0.

(c) [2 points] The Vlasov–Poisson system (1)–(2) admits an exact local energy con-
servation law in the form of

@E

@t
+r · (F + P) = 0,

where

F
.
=

X

s

Z
d3v

1

2
msv

2vfs.

What is the physical meaning of F?

(d) [22 points] Derive an expression for P. What is its physical meaning?
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II.2: MHD [30 points]

This problem concerns the “Parker spiral” model describing the geometry of the mag-
netic field emanating from the Sun and filling the interplanetary medium. Assume that
the solar wind’s magnetic field is “frozen” in the plasma and obey’s Alfvén’s theorem.

(a) [10 points] Assume at first that the Sun is an ideal sphere, does not rotate, and
that the solar wind expands radially out from the surface of the Sun at a constant speed
Vsw. Obtain an expression for the radial component of the magnetic field, assuming
that its magnitude on the Sun’s surface is Br0.

(b) [10 points] Now let the Sun rotate with an angular speed !S about its polar
axis. The initially radial magnetic field will then be stretched out in a spiral (known
as the Parker spiral in heliophysics). Obtain an equation for this spiral geometry in
the equatorial plane.

(c) [10 points] Obtain expressions for the radial and azimuthal components of the
magnetic field in the equatorial plane. Which component dominates at large radial
distances?
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II.3: Waves and Instabilities [50 points]

Consider a cold stationary electron–ion plasma with one type of ions and a background
magnetic field B0 along the z axis. The plasma is homogeneous along the y and z axes,
but the background density and B0 depend on x. In this plasma, consider stationary
waves with electric field eE = E(x) e�i!t+ikzz with kz > 0 and 0 < !/⌦i ⌧ 1. Use that

✏ =

0

@
S �iD 0
iD S 0
0 0 P

1

A , S ⇡
!2
pi

⌦i
� 1, D ⇡ � !

⌦i
S.

(a) [3 points] At ! ! 0, eE becomes stationary, and one might expect that a stationary
field cannot create a current perpendicular to B0. Then, why is S � 1 nonzero?

(b) [10 points] Assume that P is large enough such that Ez is negligible. Starting from
Maxwell’s equations and assuming the notation Nz

.
= ckz/!, show that Ey satisfies

✓
c2

!2

d2

dx2
+ S �N2

z � D2

S �N2
z

◆
Ey = 0. (1)

(c) [12 points] Assume S = (1 + x/L)N2
z , so that x = 0 corresponds to the so-called

Alfvén resonance, where S = N2
z . Assume L > 0. Argue that Eq. (1) can be written as

✓
x

d2

dx2
+

x2 � 1

2↵2

◆
Ey = 0, (2)

where x has been appropriately rescaled and ↵ is a constant that you are asked to find.
Plot the geometrical-optics (GO) dispersion curves kx(x) 7 0 corresponding to Eq. (2).
Also find and plot the inverse function, which has the form x(kx) = x̄(kx)±�(kx).

(d) [12 points] In the GO limit, calculate the x-component of the group velocity at
S�N2

z � D (for x > 1) and S�N2
z ⌧ D (for �1 < x < 0) to determine the direction

of the action flows along the dispersion curves. Identify the branches at x ! +1 and
at x ! 0�. Describe what happens to a wave launched toward the Alfvén resonance.

(e) [13 points] Consider g1(kx)
.
= ei⇥(kx)

R
dxEy(x) eikxx, where ⇥(kx)

.
=

R
dkx x̄(kx)

and x̄ is the same as in part (c). Take for granted that g1 and g2
.
= �isg1 � g01 satisfy

i�kx

✓
g1
g2

◆
=

✓
s �i
i �s

◆✓
g1
g2

◆
, s

.
= ↵2k2

x. (3)

Assume that g1,2 / e�i✓(kx), where ⇣
.
= ✓0(kx) changes slowly with kx compared with ✓.

Derive the two corresponding GO dispersion branches ⇣1,2(kx) and explain how they
are related to x(kx) in part (c) and why. By considering the “frequency gap” |⇣1 � ⇣2|,
estimate the parameter that determines the mode-conversion e�ciency. Is energy de-
position at the Alfvén resonance larger at small ↵ or at large ↵?
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II.4: Toroidal Magnetically Confined Plasmas [23 points]

Answer the following questions on toroidal magnetically confined fusion plasmas.

(a) [13 points] In a toroidal magnetically confined fusion plasma, what are the safety
factor, q, and the rotational transform, ◆? Give an expression for the safety factor in
a large aspect ratio tokamak with circular cross-section, and then write it in terms of
the toroidal current in the tokamak. Is there a similar expression for the rotational
transform in a large aspect ratio stellarator in terms of the current? in terms of the
toroidal and poloidal fields? Explain your answer.

(b) [4 points] Name two instabilities that cause turbulent transport in tokamaks.

(c) [6 points] Name three types of RF heating that are used in tokamaks.
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II.5: Applied Math [35 points]

In the theory of mode conversion of some plasma waves we arrive at the following
integral:

A(x)
.
=

1

i

Z 1

0

dk exp

✓
�ikx+

i

5
k5

◆
.

(a) [5 points] Show that A(x) is a solution of the inhomogeneous Hyper-Airy equation

d4A

dx4
� xA = 1.

(b) [5 points] Evaluate the first two terms of the power series expansion of A(x) for
x ⌧ 1.

(c) [5 points] Find the saddle points of the integral for x � 1 and �x � 1.

(d) [8 points] Sketch the steepest descent paths for x � 1 and �x � 1.

(e) [12 points] Calculate the leading order asymptotic value for both the real and
the imaginary parts of A(x) for �x � 1.

You may need to express some answers in terms of the gamma function, defined by

�(y)
.
=

Z 1

0

ds sy�1e�s.
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II.6: Experimental Short Problem [12 points]

For each of the plasmas whose characteristics are provided in the table below, describe
two ways that are commonly used to measure the electron density.

ne (cm�3) Te (eV) B (G) nn (cm�3) plasma type

1 109 10 0 1014 DC glow

2 1013 103 104 1012 magnetic fusion

3 1024 103 106 0 inertial confinement

Here, ne is the electron number density, Te is the electron temperature, B is the mag-
netic field, and nn is the neutral number density (if necessary, assume atomic hydrogen).
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