DEPARTMENT OF ASTROPHYSICAL SCIENCES

PrLasMA PHYSICS SECTION

General Ezamination
Part I (May 16, 1988)

Answer all problems!

The total time allotted for this part is 8 1/2 hours. Scores on questions will be
weighted in proportion to the allotted time. .

Start each numbered problem on a new page. Put your name on every page.

When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do not attempt
a particular problem, write on a sheet of paper ] have not attempted Problem __.”
and sign your name.

Notation: We attempt to be consistent and use the construction a - expression to
mean “a is defined to be expression.” Many people use ‘=’ instead of defy.

Good luck!!! -



[10 min.]

(5 min.]

PROBLEM 1: General physics [20 minutes total].

The intrepid space explorer Snake Simon lands on the isothermal planet Ferth. Blow-
ing on his 30 cm open-ended reed pipe, he finds that it sounds middle A (440 hz), and
dangling his Girard—Perregaux pocket watch from its 40 cm gold chain, he times 10 full

oscillations in 15 seconds. What is the scale height of the Ferthian atmosphere?

PROBLEM 2: Kinetic theory [15 minutes total].

Consider a gas of N diatomic molecules immersed in a uniform electric field. Suppose
that each molecule can be modeled as two equal masses of opposite charges cannected by

a rigid rod of length L.

(2a) Write down a Liouville equation for the system of molecules, neglecting any fields
generated by the molecules themselves (i.e., assume that the molecules are noninteracting).

What is the dimension of the space in which the distribution function -evolves?

(2b) List the important properties of the equation that you have written down. Name and
express mathematically these properties. [Hint: You may be able to surmise the answer

to part (b) even if you do not complete part (a).]



‘5 min.]

(10 min.]

(15 min.]

PROBLEM 3: Transport (30 minutes totall.

(3a) In estimating classical particle diffusion for electrons and hydrogen ions in a uni-
form magnetic field (i.e., cylindrical geometry with B = Bo2), the spatial change in the
guiding-center position of each particle is given by AT = ATX2/w. (with we being the
gyrofrequency and A¥ repesenting the change in the velocity due to collisions). Use this
expression to illustrate the influence of like-particle and unlike-particle collisions on diffu-

sion.

(8b) For a toroidal geometry a fluid-type analysis is often used to calculate the so-called
Pfirsch-Schliiter diffusion coefficient. Here, however, show how to use heuristic “random-
walk” arguments to estimate Dps. How does it compare to the ordinary classical diffusion
coefficient D in the simple system described in part (a)? Describe the collisionality regime

in which such estimates are appropriate.

(3¢) Describe the so-called banana regime for a tokamak and give an estimate for the
diffusion coefficient in this regime. Justify your choice for the radial step size by invoking

conservation of canonical angular momentum.



PROBLEM 4: Ezperimental [15 minutes total].

A plasma is created by an rf discharge whose frequency is much less than the plasma
frequency. Assume that the plasma parameters (e.g., temperature or density) do not
change in time. The plasma potential can be measured by a floating probe. The plasma

potential oscillates around the ground potential (i.e., V = Vo sinwt).

You are asked to obtain probe characteristics by using another Langmuir probe. How

would you do it? Give a rough sketch of the arrangement.

Hint: A resistor, an oscilloscope, and wires etc. should be sufficient.



(15 min.]

[20 min.]
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Fig. 1: A disturbance localized to volume V.

PROBLEM 5: MHD [35 minutes total].

Consider an infinite homogeneous plasma in a homogeneous magnetic field in the

x direction:

—

B e Boé.

Let there be a localized disturbance in a volume V' with the plasma undisturbed outside

of V. (See Fig. 1.)

(5a) Show from the ideal MHD equations that the total momentum 13wave,
Prave ‘?éf/da?pa, : o
|4

is constant in time.

(5b) Let the disturbance be a plane-polarized shearAlfvén wave packet propagating in
the positive z direction (along .é) with velocity ca. Let the gas pressure p vanish.. By
working to second order, calculate the momentum P, ove and energy Eyave of the wave and

show that
P wave _ _1_
Eyave B 2ca




[4 min.]

[6 min.]

(not 1/ca!). Hint: You may assume that the momentum is in the direction of wave

propagation.

PROBLEM 6: Ezperimental [15 minutes totall.

The global energy confinement time 7g is one of the most commonly used experimen-
tal quantities for gauging the quality of a tokamak plasma. In a steady-state situation,
rg can be defined to be the ratio of total plasma energy to input power needed to sus-
tain the plasma. In estimating the total plasma energy, there are two main experimental
approaches—namely, the magnetic and the kinetic approaches. Describe briefly what these

are and list diagnostics used. What are their advantages and disadvantages?

PROBLEM 7: Quasilinear theory I [10 minutes total].

(7a) How does the derivation of quasilinear theory avoid dealing with the occurrence of

particles trapped in the moving waves?

(7b) A. N. Kaufman divides the diffusion function into a part that yields a component
of f(¥,t) whose amplitude is proportional to |E|?> and a part that yields a component
whose rate of evolution is proportional to |E |2. What are applications for each of these

components? List as many as you can.



PROBLEM 8: Quasilinear theory II [40 minutes totall.

In this problem, we shall employ quasilinear theory and consider the effects of ICRF
heating on ions in large-aspect-ratio tokamaks with circular magnetic surfaces. Referring
to Fig. 2, we have w = we(Re) (i.e., w = ely/McR.); Ry corresponds to the banana tips

of the trapped ions (ignore the finite banana widths here).

[ lC«J: ‘RC.

(
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Fig. 2: Minor cross-section of a tokamak,
showing the nominal resonance radius R, and
the radius R}, of the banana tips of the trapped

ions.

Since the time scale of quasilinear diffusion is much longer than the bounce or transit
periods of the ions, we have, in the lowest-order approximation, the following quasilinear

equation for the bounce/transit-averaged distribution function Fo:
a s -
b_tFO(e, A) = CDCF(), (81)
def o def def o .
where € = v2/2, A = p/e (where p = v% /2B) defines the pitch angle,
def =2
D = g(e,\)|6E|* > 0, (8.2)

g(e=0, ) = g(e, A=0) = g(e, \=1/Bmin) = 0, (8.3)



[25 min.]

[15 min.]

Bpin is the minimum value of B on a given flux surface, and

dﬁf 8 We 1 8
£ 5+ (55 tan (84)

(We have suppressed the dependence on the minor radius.)

(8a) Show that time-asymptotically Fy exhibits the quasilinear “flattening” along a cer-

tain characteristic K = K(€, A). That is, prove that

ﬁm%HFWﬂ (8.5)
where
K % ¢(1 — Bwl/w,). (8.6)

Hint: Calculate the time-asymptotic evolution of the velocity-space average of FZ.

Note the following useful relation of magnetic flux-tube averaging of velocity-space inte-

dz oo 1/Bmin
f—/wﬁzm/ek/ d\ F2,
B 0 (1]
f&
™= P
|vy |

(8b) Prove that for very energetic (¢ — oo) ions produced-by the ICRF heating, the

grations:

where

asymptotic distribution function Fo, Eq. (8.5), dictates that all ions are trapped and their
banana tips at R = Ry, coincide with the resonance layer at R = Rc. (See Fig. 2.) ' In
other words, as the trapped ions are heated by the ICRF waves, their banana tips become
time-asymptotically localized around the resonance layer. This effect is called “resonance

Al

localization.”



PROBLEM 9: Applied math [30 minutes total].

Trapped particles can destabilize an MHD mode. A model dispersion relation for the
frequency w 1s
0= —A—i2 +B—“’—1n<1—ﬂ),
wa wq w
where 3 is the trapped-particle beta, wq is the trapped-particle precession rate, wp is the

Alfvén frequency, and A is a real number depending on the equilibrium parameters.

[10 min.] (9a) For 0 < w < wq, find approximate bounds on A such that there exist one, two, or no

thresholds.
[10 min.] (9b) Find the values of B associated with each threshold frequency.

[10 min.] (9¢) For the case A = 0, expand the w # 0 branch around threshold to find the dependence

of the growth rate on g.






DEPARTMENT OF ASTROPHYSICAL SCIENCES

PLAsSMA PHYSICS SECTION

General Erxamination

Part IT (May 17, 1988)

Answer all problems!

The total time allotted for this part is 8 1/2 hours. Scores on questions will be
weighted in proportion to the allotted time.

Start each numbered problem on a new page. Put your name on every page.
When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do not attempt

a particular problem, write on a sheet of paper “I have not attempted Problem __.”
and sign your name.

Notation: We attempt to be consistent and use the construction a = expression to
mean “a is defined to be ezpression.” Many people use ‘=’ instead of defy.

Good luck!!!

-10 -



PROBLEM 1: Dimensionless parameters [15 minutes total.

What dimensionless number or numbers characterize, by being large or small com-

pared to unity,
[3 min.] (1b) The plasma state?
[4 min.] (1a) Adiabaticity of a particle orbit in a magnetic field?
(4 min.] (1c) “Hot” vs. “cold” plasma wave analysis?
(4 min.] (1d) The effect of resistivity on magnetohydrodynamic motions?

In each case, justify your answer very briefly.

-11 -
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Fig. 3: Geometry of the E layer.

PROBLEM 2: Two-fluid equations (30 minutes total].

Consider a weakly ionized cold plasma immersed in a uniform external mag%etic field
B = B, and an electric field E = Eo& (such as in the ionosphere), where Ej is a constant.

Consider the two-fluid model for the electrons and ions in steady state:

— 1_‘ — =
0= - (B + ~%.XB) — venTe,
Me c
1 —
0= (B + ~5;xB) — vin

[10 min.] (2a) Show that the current density 7 is given by

- .  ExB
j=0,E—-ou B

(2.1)
Derive o, and oH.

[20 min.] (2b) Near h ~ 110 km altitude, there is a layer (the E layer). where the conductivity o is
much larger than that on either side of the layer in the equatorial ionosphere. (See Fig. 3.)
Assuming ¢ = 0 on both sides of the layer, find Ey in terms of Ep. Also find the total

current induced in the z direction in terms of Eq.

~-12 -



PROBLEM 3: Waves and instabilities [10 minutes total].
Consider a plasma for —oco < z < co. Assume that a perturbation
(1) = 63(x) exp(—iwt)
has the following fwo asymptotic solutions as |z| — oo:
|:1|i1>noo §3(z) — exp(Fiz?/w).

Indicate which one of the solutions satisfies the proper boundary condition and explain

why.

PROBLEM 4: Ezperimental [20 minutes total]. -_ii'?*-'
Controlling plasma impurities (the non-fuel component) is an importaat problem ing

controlled thermonuclear fusion research. For a tokamak plasma:

[3 min.] (4a) List reasons why controlling impurities are important.

(4c) What are the experimental techniques being used to measure the impurity levels?

(4d) List experimental procedures and approaches that are being pursued to control the

impurity levels. Can you think of situations in which impurities are actually useful?

- 13 -



PROBLEM 5: Alfvén waves [30 minutes total).

A packet of shear-Alfvén waves (w? = kﬁczA) propagates in a cold plasma along the
axis of an axisymmetric field. Proceeding along the axis from Region I to Region II, the
plasma density and the zero-order magnetic field change—very slowly—from (p1, B1) to
(p11, Br1). (Near the axis, let p and B be considered to be functions of distance aléng
the axis only.) What are the ratios of the rms amplitudes for the electric and magnetic

fluctuating fields in Region II compared to their respective values in Region 17

PROBLEM 6: Mirrors -[15 minutes totall. - «

Consider a plasma confined in a magnetic mirror geometry. Suppose the electron
and ion distribution functions are known (but different) functions of energy and magnetic
moment. Outline the analytic procedure necessary to calculate the electrostatic potential
variation along a magnetic field line. (If your answer involves integrals, be sure to specify

the limits of integration explicitly.)

- 14 -



[5 min.]

[10 min.]

[6 min.]

PROBLEM 7: Kinetic theory (50 minutes total.

This problem relates to neutral beam heating in typical tokamak experiments. Con-
sider the slowing down and scattering of an 80 keV beam of deuterium ions in a neu-
tral electron-proton plasma, where the electron and hydrogen temperatures are given by
T, = T; = 1 keV, and the plasma density is n = 10'%cm 3. The evolution of the deuterium

distribution function f; is described rather well for ¢ > 0 by the following equation:

(a) (b) (c)

my ’UE 6 2 8
[(v* +v2) fal + i (1-n?) g, Fe| + S(v, ), (7.1)

o _1[10 0
2 mg v3 Op

ot T, |v2ov

where S(v, 1) is a time-independent source function (turned on at t = 0) for the deuterium,

and
3 def 3/mTme 5 def 4T 3y/mTm, 4 def €XlnA
v = ———,, T, = — —— —7y,, LS ——g—s
4 my nL 4 my 4dmegm

(7a) Interpret each of the terms (a)-(c) in Eq. (7.1). What approximations were used in
obtaining this equation from the Landau collision integral? In what region of velocity space

does the equation fail to represent adequately the evolution of the deuterium distribution?

(7b) This equation may be solved in the finite region bounded by 80 keV, or v < vy,
where mgv32/2 def 80keV. Show that, for appropriate boundary and initial conditions, the
solution to this equation, if it exists, is unique. Explain in physical terms the most general

conditions that must be imposed to ensure uniqueness.

(7c) Suppose that initially fa = 0 and that the deuterium is injected at the rate
N cm—3sec™! at exactly 80 keV in exactly the z direction. Use contour plots to sketch the
deuterium distribution both for times short compared to 7, and for times long compared

to 7,. Make and indicate any reasonable, physical assumptions that you need to produce

these sketches. (Continued on nezt page.)

-15—



0 min.] (7d) What is the total steady-state heating power? How is this power apportioned be-
tween the heating power P, to electrons and the heating power P; to ions? You may leave

your answer in terms of elementary integrals.

[20 min.] (7e) Suppose, for simplicity, that we are interested only in the pitch-angle-averaged dis-
tribution, namely F(v,t) = [duf(v,p,t). Use the method of characteristics to solve

for F(v,t). Sketch F(v,1). [Hint: The algebra is somewhat easier if you solve for

g def (v® + v2)F(v,t).] Describe briefly (one sentence suffices) how you would solve

for f(v,p,1).

PROBLEM 8: MHD [10 minutes total].

An intuitive form of the plasma (or “fluid”) part 6Ws of 6W is as follows:

(1) (2) (3)
. > 12 B2 . . L =
(4) (5)

_ (€L -V P)R-E) - §)(€1 xb)-Q1 |

[5 min.] (8a) Briefly state the physical significance of each of the five terms, including which of

the MHD waves or instabilities it contributes to in tokamaks.

[5 min.] (8b) Which two terms balance to determine the ballooning-mode stability of tokamaks?

Estimate the stability criterion.

-16 —



PROBLEM 9: Applied math [25 minutes total].

Consider the recurrence relation in n

n?Qn(z) = (2n - l)l/i?an_l(m) ~ Qu-2(2),

where z is a real, positive parameter and n is an integer.

[5 min.] (9a) How many independent solutions does this recurrence relation have? Justify your

answer.

[20 min.] (9b) Suppose you are given the initial conditions

Q—l(‘”) =1,

sinh !z
Qo(z) = ——-
T

With such initial conditions, it can be shown that for n — +o0

r\1/2 1 k) n+1/2
(e = (5;) r(n+3/2>(1+m) '

(Don’t try to prove this.) Describe how to evaluate Q,(z) numerically for large positive n

(n ~ 100, say) and fixed z in such a way as to minimize the error in the result.

Hint: There is a “wrong” way of implementing such a method in which the error

grows exponentially with n. e B

17 -



DEPARTMENT OF ASTROPHYSICAL SCIENCES

PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION

OCTOBER 1988

PART I - OCTOBER 17

- Answer all problems

- NOTE: Choose either Set (A and B) or Set (C and D)} for Problem #4. 'The

time of each set is the same.

- The total time allotted for this day is 3 3/4 hours. Scores on questions

will be weighted in proportion to the allotted time.
- Start each numbered problem on a new page. Put your name on every page.

- When you do not have time to put answers into forms that satisfy you, -

indicate specifically how you would proceed if more time were available. If

you do not attempt a particular problem, write on a-sheet of paper "I have not

attempted Problem ___ " and sign your name.

GOOD LUCK!



PROBLEM #1 Particle Orbits 40 mins.

Consider particle drifts in the Earth’s magnetic field, which we model as a
dipole located at the Earth center with the north pole pointing in the z-
direction. The magnetic potential of the dipole is given by

V= - M cos 0/r2,

where M is the magnetic moment of the Earth and (r,f) is the radius and polar

angle (using the spherical coordinates r,§,¥).

1. 5 mins. Derive the components of the magnetic field B(r,0,¥) from B = v

in the spherical coordinates.

2. 10 mins. Consider the motion of a single particle with charge q and mass -
m, -1oc;ted at’ (xr,6,y) = (Ro,w/2,¢o) and with initial -velocity - given : .,
by (vl,v") = (vo ,0), where L and " correspond to perpendicular épd:Parallgl i
to B field. Find the drift velocity in the ¥ direction and calculate the

current associated with the drift motion, Find the induced magnetic field at

the Earth’s center.



3. 10 mins. The gyromotion of the particle represents a dipole moment.
Calculate the magnetic field at the Earth'’s center due to particle gyromotion
around the magnetic field. Find the total magnetic field induced at the

origin.

A

4., 15 mins Add uniform magnetic and electric fields B = B, z, E = E; x to

the dipole magnetic field. Show the orbit of a particle whose coordinates are

initially (x,y,2) = (X5, ¥4, 0) with (v , v") = (v,,0) is given by

-3/2

X - x = (ﬁ%;) [+ y2 32 (xi + yi) ]

where p is the magnetic moment of the particle.



PROBLEM # 2 EXPERIMENTAL METHODS - NEUTRAL BEAM INJECTION

35 mins

1. 5 mins Make a sketch of a neutral injection system for a tokamak. I._.ist
and describe the main functions of each of the components.

2. 15 mins The system has to deliver a certain beam current I, (e.g., 20 A)
of 60 keV deuterons into an area A (e.g., 10 X 10 em). Explain in a semi-
quantitative fashion, how you would dimension each of the components. How do
you focus the beam?

3. 5 mins Discuss the features and wiggles of the parallel and perpendicular

charge exchange spectra from a tokamak plasma into which a 26 keV neutral beam

was injected.

105 T 105 T T T T T
. T T T T T (0) . (b)
o N ] .
o PARALLEL Ao PERPENDICULAR
©re CHARGE EXCH. CHARGE EXCH
o
o 8
c,O (¢}
103 - %308% §‘,’:°° B 13- © —~
3 v e | o _
_'g o °z °°° 0© 0® —lg CDO =
102 |- ° o - 102 |- 8, . =
° -]
o
°o
10' |- - 10 - 8 -
(]
o
-]
10° 1 1 1 1 1 1 100 a3 [ 1
0o 4 8 12 16 20 24 28 o 4 8 12 16 20 24
E (keV) E (keV)

4. 10 mins. Discuss the atomic processes which determine the attenuation of
the neutral beam in the plasma. Sketch the dependence of the atomic.-processes

on the energy of the injected neutral particles.



PROBLEM #3 SINGLE PARTICLE MOTIONS (30 mins)

20 mins.

a). A charged particle in a uniform magnetic field, B = zB,, is subject to a

weak electric field, E=-x f(t) + yg(tr). When Fourier analyzed over a

cyclotron period, E(Q) = Y (xfn + ygn) e-lnnt, fn(ﬂ) and gn(ﬂ) have no
n

components at n = 0 or n = 1, corresponding to zero-frequency and the

cyclotron fundamental, respectively. Show that the orbit is periodic.

10 mins

b). Would this same conclusion be valid in the case £ = - V¥(x,y,t), but
still with in(x,y,ﬂ) =0, n=0 or 1, referring again to Fourier analysis over
a cyclotron period? Defend your answer in a qualitative manner. Is resonant

acceleration possible in this case? Explain.



PROBLEM #4 GHOOSE TO DO EITHER SET {A AND B} OR SET (C AND D}.

4A. MHD PROBLEM 20 mins.

Paramagnetism and Diamagnetism in Tokamak Equilibrium

Consider a "straight tokamak" i.e., neglect toroidal effects. Show that

depending on the value of B,, defined by

2 a
ﬂ 1éx f prdr
6 2
p I o
op

the tokamak will be either paramagnetic or diamagnetic with respect to the

"toroidal" field. Here Ip is the "toroidal" current, p(r) is the plasma

pressure, and a is the minor radius.



PROBLEM #4B. WAVES PHYSICS 30 mins.

The wave equation

N

~Ed

ﬁx(ﬁxﬁ)c—z+

€

-
where K is the dielectric tensor, can be approximated for an electron plasma

wave in a dilute plasma with a very strong magnetic field as

1 - n” 0 nln" EX
0 l-n 0 . E = 0
y
2,2 2 E
nln” 0 - (wpe/w )-n_L zZ
Here we assumed n, = ckx/w =n, ny = 0, and n, = n”. -In -the 1limit

of nlz, n"2 >> 1, find the

(a) Wave dispersion relation

(b) Wave phase velocities, vph(L) and vbh(”)

(c) Wave group velocities, Vg(l) and‘vg(")

(d) " Wave energy density and power flux, P(L) and P(”)

(e) Wave impedance, By/Ez'



2ND CHOICE SET

PROBLEM #4GC. NUMERICAL ANALYSIS 10 mins.

A function y(x) satisfies

d
=ty . ¥ =y,

Outline a scheme for calculating y(x) numerically. Estimate the error, i.e.

the difference between the computed and true values of y(x) for the case £(y)

=y.



PROBLEM 4D. INSTABILITIES: MAGNETIC ISLANDS 40 mins.
Consider a tokamak in cyclindrical approximation with

9]

- B Y
B = BO[¢ + Rq(D)

A
Introduce a perturbation 5B = rb cos(mf - n¢) (6B must also have other

components, but they can be ignored).

a. Find the equations for the field lines,i.e. calculate the quantities,

dé/d¢ and dr/d¢, where # and r are coordinates of the field line.

b. Integrate to find the flux surfaces r(f#,¢) near a surface rg with

q(rs) = m/n.
c. Find the magnetic island width Ar.
d. Describe what happens if there are two such perturbations,(ml,ni) and -

(mg,ny) and find an approximate critical threshold level for -the perturbation..

amplitudes (Chirikov overlap condition).



PROBLEM #5 KINETIC THEORY 25 mins

15 mins: Show that if f obeys the Klimontovich Equation, then entropy is

conserved. State clearly any assumptions or facts that you use.

10 mins: Very briefly, discuss the significance of this conservation. In
particular, contrast the Klimontovich equation to an equation in which entropy

is not conserved.



PROBLEM #6 IDEAL MHD PROPERTIES OF THE Z-PINCH 45 mins.

A

The 1linear z pinch is 1like a "straight" (non-toroidal) tokamak with no

equilibrium toroidal field (Bz), and with circular cross section.

Cylindrical coordinates (r,f,z). B = (O,Bo,O).

PART A: Equilibrium

(i) Write down the equilibrium equation satisfied by Bo(r) and the scalar

pressure p(r).

(ii) 1If Ba(r) is given by the profile

then what is the equilibrium pressure p(r)?

PART B: Stability to m=0 perturbations

Consider a small displacement g(r) e1kz (no § wvariation), where T(r) = [£r(r),
0, §,(r)], (no component in the § direction). The change in potential energy

for infinitesimal displacement ¢ is given by



a , !
§W = [ rdr {B§k2|gz|2 + 2 E— Ierl2 + Bgr2 l;£l2
(o]

£.* §
+riks 216 (5 - & ()

N %

+ple (26" + ik )[X (xén)' - ikE 1}

where prime ()' denotes differentiation with respect to r, 3/8r(), and star

()% denotes complex conjugate.

(1ii) What is the minimizing value of §z(r), expressed in terms of the other

variables?

(iv) TUsing the result found in (iii), can you find a necessary and sufficient

condition for the B,(r) and p(r) profiles to be stable?
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- Answer all problems

- Choose either Set (A and B} or Set {C, D and E} for Problem #4. The time

for each set is the same. -

- The total time allotted for this day is 3 3/4 hours. Scores on questions

will be weighted in proportion to the allotted time. o
- Start each numbered problem on a new page. Put your name on &very page.
- s O

- When you do not have time to put answers into forms that satisfy you,

indicate specifically how you would proceed if more time were available. If

you do not attempt a particular problem, write on a sheet of paper "I have not

attempted Problem __ " and sign your name.

GOOD LUCK!



PROBLEM #1 WAVES AND INSTABILITIES QUICKIE 10 mins.

Consider the injection of a neutral beam into a plasma perpendicular to a
uniform magnetic field. Assuming the neutral particles are ionized along the
beam path, show that polarization charges and hence an electric field appear
in the beam. Discuss the stability of the beam under the influence of the

electric field.



PROBLEM #2 KINETIC THEORY 50 mins.

This problem relates to neutral beam heating in typical tokamak experiments.
Consider the slowing down and scattering of an 80 keV beam of deuterium ions
in a neutral electron-proton plasma, where the electron and hydrogen
temperatures are given by T, = T; = 1 keV, and the plasma density is n =

1014cm'3. The evolution of the deuterium distribution function, fd, is

described rather well for t > 0 by the following equation:

3
af m, v
d 1 3 3 3 1L7i 'c38d 2, 8
—a_L1 (L o 17i cd_ i 3 .
st 1 Uzav [V *VIRI*o 5 S @ ”)a#fd}+5(v,n) (*)
I dv
where S(v,u) is a time-independent source function (turned on at t = 0) for
the deuterium, and
A3 3 _an3fre 3 _etima
¢c” 4 m ‘Te’ "s " nL 4 m, te 2 2
i d 4we m

a) 5 mins. Interpret each of the terms in Eq. (*). What approximations were
used in obtaining this -equation from the Landau collision integral? In what
region of velocity space does the equation fail to represent adequately - the _
evolution of the deuterium distribution? 5 -

b) 15 mins. This equation may be solved in the finite region bounded by 80
keV, or v < v, where mdvg/Z = 80 keV. Show that; for appropriate boundary
and initial conditions, the solution to this equation, if it exists, is
unique. Explain in physical terms the most general conditions that must be

imposed to ensure uniqueness. HINT: choose an appropriate weighting factor in

constructing your quadratic form.



c¢) 10 mins. Suppose that initially fj; = O and that the deuterium is injected

at the rate Nem 3sec™l at exactly 80 keV in exactly the z-direction. What is
the total steady state heating power? How is this power apportioned between

and the heating power to ions, P:. You

the heating power to electrons, P i

e’
may leave your answer in terms of elementary integrals. In general, injection
is such that Vo > V.. However, for the limit Vv, << V., what is the ratio of

power absorbed by electrons to power absorbed by ioms.

d) 20 mins. Suppose, for simplicity, that we are interested only in the
pitch-angle averaged distribution, namely F(v,t) = _f du f(v,t). Use the
method of characteristics to solve for F(v,t). Sketch F(v,t). (HINT: the
algebra is somewhat easier if you solve for g = (v3 + v3c) F(v,t)). Describe

briefly (one sentence suffices) how you would solve for f(v,u,t).



PROBLEM #3 WAVES CYCLOTRON HARMONIC DAMPING 40 mins.

The dispersion relation for electrostatic oscillations in a uniform

collisionfree magnetized plasma is

2 2
% J “(z)
n (k

2 q
f 2wvldvl w-k v -nw X
o zZ z c

2 & 7 9t
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where ky =0, f= fo(vl,v"), z, = kxvl/wcs’ w.g = qSB/mSc.

a) 15 mins. Taking the cold plasma limit, put this dispersion relation into

the form
w 2 . 2
2 ps 2 _bs  _
D=l (l+) —H5 ) +k@d- 2590
s w -w s w
cs
2 4
1 .z (z/2) (z/2)

Jn(z) Y (2) [1 - 1! (n+l) T T2 (@) (nh2) el

b) 25 mins. The cold-plasma relation D

= 0 in Part (a) describes,

among others, lower hybrid waves. Assume that the parameters are such that
this dispersion relation is satisfied by w = 3w, ; and assume now that the ion

temperature is low but finite. Rewrite the dispersion relation to include 3rd

harmonic ion cyclotron damping. Assume |k, | >> |k,|. Finally, wrikte down an

equation for the damping rate.



PROBLEM #4 CHOOSE TO DO EITHER SET (A & B) OR SET (C, D & E).

35 mins.

4A. INTRODUCTORY PLASMA PHYSICS 10 mins.

a) 5 mins. Radiation from a supernova reaches the earth’s ionosphere.

these waves be appreciably Landau-damped?

b) 5 mins. One way to define resistivity n is by the equation

It
I

nj

However, this is inappropriate for perpendicular Spitzer resistivity.

Will

Why?

What is the appropriate way (i.e. by what physical mechanism) to define n, -



4B. EXPERIMENTAL METHODS 25 mins.

An omegatron is a mass spectrometer for ions which uses crossed electric and

magnetic fields defined by

E = XE sin wt
- o
and
B=2zB .
= =70
a) Solve the equations of motion of a "resonant" (i.e. w = ﬂc) particle.

Sketch the orbit. Assume that v" = 0.

b) Consider the operation of such a device with field strengths E; = 10 V/cm
and B = 103G and dimensions as shown in the figure.

i) Calculate the resonant frequencies.

ii) What are the total path lengths traversed by an HY ion and an ArT ion

as they are resonantly (separately) pumped from the axis to the collector?
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SECOND CHOICE SET
PROBLEM #4C HEAT FLUX PROBLEM 20 mins.

It is often important to estimate a heat flux (per unit area) of a plate

exposed to a plasma of density n, T and ion mass, M. Show that the main

e!
term of the heat flux is proportional to nTe3/2M'l/21n(M/m), where m is the
electron mass. For simplicity, you can assume that T; << T,. The plate is

assumed to be at the floating potential. (Hint: A simple application of

Langmuir probe theory).

PROBLEM #4D EXPERIMENTAL QUICKIE 10 mins.

A 400 eV electron is moving in a simple torus in the direction of the toroidal
field which is 5 kG at the orbit radius of 60 cm. State the direction and
magnitude of an additional magnetic field needed to keep the electron in the

circular orbit.
PROBLEM #4E EXPERIMENTAL QUICKIE 5 mins.

List three distinct methods used to measure electron temperature in plasmas
with thermonuclear type parameters. Do the same for low temperature (T ~ 5eV)

plasmas.



PROBLEM #5 MHD PROBLEM 45 mins.
An infinite cylinder of radius b contains a uniform axial magnetic field

A

B = B, z and a concentric uniform cold infinitely conducting plasma of initial

radius ajy and density n The shell of the cylinder is also infinitely

o

conducting and the region between the plasma and this shell is a vacuum.

VACUUVH
o

3 A

)

The plasma is slowly heated to a temperature T so that it stays in MHD

equilibrium.
1. 5 mins. What will happen? What is conserved? ; o%{

2. 15 mins. Write an algebraic equation which determines the final radius of

the plasma in terms of its-initial parameters and T (do not splvg,it),

3. 10 mins. Is there an upper limit to the temperature for which the plasma
is confined?
a) If so what is it?

b) If not, determine the plasma radius and shell thickness for large T.

4., 15 mins. Repeat the first and second part of the problem if the shell is
not infinitely conducting but is constrained by external circuitry to carry a

constant surface current (The plasma must not touch the wall).



PROBLEM #6 APPLIED MATH 45 mins.

This question explores the limits of an asympotic representation.

a) 5 mins. Show that

© -xt
£(x) = [ S a¢ (for x > 0) (1)
o 1+t

satisfies the equation

2
g—g + £ = i (for x > 0) (11)
X
dx
with the boundary conditions £ -+ O X + ©
f=mn/2 x=0

b) 10 mins. Find a asymptotic series for f(x) as x + =

HINT:

0“—38
ct
)
2z
1
M
(a3

Is this series convergent?

c) 15 mins. Show that the remainder after N terms of the series is

2(N+1)

N+1 7t
J 2

1+t

ey = (-1) e Xt gt _(411) -

' 1 [2(N+1)]!
Also show that |€N| < x2(N+1)



