DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 18, 1995

9am. -1 p.m.

. Answer all problems. Problem 4 has a choice of A or B (answer one
only).
. The exam has been designed to require about 3 hours of work; however we

have allowed you an extra hour. Thus the total time allotted for this day is 4
hours. Scores on questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet.. Put your name,
question # and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If you
do not attempt a particular problem, write on a sheet of paper "I have not
attempted Problem " and sign your name. ST

. All work on this examination must be independent. No assistance from
other persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are
permitted.
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Problems for Part I, May 18. 1995

MHD Quickie

Spectroscopy Quickie

Alfven Wave

Experimental - Do problem A OR B
4a) Experimental Plasma Physics
4b) Experimental Glow Discharge
Applied Math

Nonlinear Theory

Mirror Quickie

15 points
10 points -
Hs4Q points
45 points

40 points
25 points
15 points
Total - 190 points




Part I, Question 1

MHD Quickie (15 minutes)

The rotational transform in a stellarator is provided by the twisting of ex-
ternal field coils, and consequently the flux surfaces have complicated shapes
which are not toroidally symmetric. Nevertheless, plasma pressure is still
constant on each flux surface (in the ideal MHD approximation for a station-
ary equilibrium).

What is a flux surface? (5 points) Show why pressure is constant on a
flux surface (in the ideal MHD approximation for a stationary equilibrium).
(5 points) Give an example of a plasma device that operates with pressure
not constant on flux surfaces. (5 points)



Part I, Question 2

Experimental quickie (10 minutes)

Consider the observation of atoms or ions in a magnetized plasma by visible-
light spectroscopy.
a) Name, and briefly describe, four effects that can cause a shift or
broadening of the emitted spectral lines.

b) Estimate the thermal width of the resonance line ( A = 5535 °A, for the
purists) emitted from barium neutrals at a temperature of 2 eV in a
tenuous plasma with an electron temperature of 100 eV. What type of
spectrometer could be used to perform such a measurement?



Part I, Question 3

Damping of an Alfvén wave in a Partially Ionized Plasma

45 #q minutes

Find the damping rate of a small amplitude parallel propagating linearly
polarized Alfvén wave propagating in a hydrogenic uniformly magnetized
plasma that is 50 percent ionized. (The neutral and ion densities are equal.)

a) Take densities as p; = pp. You may assume that the densities are
unperturbed in the wave. Take the equiblibrium magnetic field to be Byz
where By is constant. Take the perturbed neutral and ion velocities v; and
v,, of the ions and neutrals respectively to be in the z direction. Take the
wave quantities proportional to exp i(—wt + kz).

b) Consider the plasma to be described by magnetohydrodynamic equa-
tions with an additional force per unit volume of —p;Vin (Vi — V). Consider
that the only force per unit volume on the neutrals is —pp¥n; (Vn — vi). with
Vi, = Uy; Where these are the ion-neutral and neutral-ion collision frequencies
respectively.

1. (15 minutes) Write down the correct linearized equations for v;, and
.o, Show that the j x B force can be written as —p;k®Vivi/(—iw) where
Vi = B*/ /.

2. (10 minutes) Derive an equation for complex w as a function of wave
number k. (Don’t solve it yet.) - )

3. (10 minutes) Solve for the real part of the frequency to lowest order
in two limits: w > v, and w < v;,. What is the effective density for the
Alfvén wave in these two limits. (Can you give a physical justification for
these values? ) S

4. (10 minutes) Solve for the damping rate ( the imaginary part d,t:l‘i)) to
lowest order in the same two limits. (Can you give a physical argument for
the result in the high frequency limit?)



Do A or B only

Day I, Question 4A

Experimental plasma physics (45 minutes)

Startup in tokamaks begins with a Townsend avalanche in a poloidal field null. This
puts certain requirements on the quality of the field null, the toroidal loop voltage, and
the gas pressure. Discuss these requirements in terms of Townsend’s first coefficient for
deuterium, o = A p exp(-Bp/E), where A =510 m-ltorr], and B = 12,500 V mtorrL.



Do A or B only
Day T, Question 4B

Experimental methods: The Glow Discharge (45 minutes)

a) Apparatus
Describe the apparatus needed to make an anomalous (DC) glow
discharge. Include equipment for: 1) obtaining (and measuring) the
appropriate gas pressure; 2) providing (and measuring) the requisite
electrical power; and 3) measuring the plasma electron temperature and
space potential. (15 minutes)
b) Breakdown phenomena (10 minutes)
i) Describe (sketch) the relation between breakdown voltage Vg and
pressure and explain the physical processes responsible for its shape.
ii) Rank the following gases in order of lowest to highest Vg: Ar, Ne, Air
¢) Describe the (visible light and space potential) architecture of the glow
discharge. Pay special attention to the structure in the sheath. (10 minutes)
d) Explain why a hollow cathode configuration allows higher densities to be
achieved than a planar configuration. (10 minutes)



Part I, Question 5

Applied Math

1. (40 minutes) Consider the equation

on the interval —1 < z < 1, with the boundary conditions y(—1) = 1,
y(1) = .01. Find the leading order asymptotic approximation to the
solution for y in the limit ¢ — 0,. Give a single expression that is
uniformly valid in the interval —1 < z < 1. Sketch what the solution

looks like.

VA



Part I, Question 6

Nonlinear Theory
(25 points)

A bump-on-tail instability can be modeled by the equations

dx/dt

'
dv/dt = A sin(x-t)
with x a particle coordinate, and Asin(x-t) an electric potential.

a) Calculate the maximum velocity excursion from the
unperturbed (A=0) motion. Show the particle trajectories in the x-v
plane.

b)  Find the trapping frequency ot for an orbit deeply trapped in
the wave.

c) The initial particle distribution is
vi2 0O<v<2

F={
0 v>2

Sketch the particle distribution for w¢t >> 1. Calculate the fractional
energy change in the particle distribution.

d) If the mode has a linear growth rate y, what will be the
approximate saturation mode amplitude A? Why?



Part I, Question 7

2. Mirror Quickie (15 points)

(a) (5 pts) Describe how mirror confinement works, and sketch single particle orbits.

(b) (5 pts) Derive a trapping condition for mirror confined particles in terms of the particle’s initial
coordinates and the mirror ratio.

(c) (5 pts) Please explain briefly what fluid instability might be exhibited by a plasma confined in
a simple mirror?



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
MAY 19, 1995

9 am. - 1 p.m.

. Answer all problems. Problem 2 and 6 have a choice of A or B (answer
one in each question only).

. The exam has been designed to require about 3 hours of work; however we
have allowed you an extra hour. Thus the total time allotted for this day is 4
hours. Scores on questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name,
question # and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If you
do not attempt a particular problem, write on a sheet of paper "I have not
attempted Problem " and sign your name. ~

. All work on this examination must be independent. No assistance from
other persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are
permitted.



Problems for Part I, May 19, 1995

8) Tokamak Orbits 20 points
) General - Do problem A OR B 45 points -
9a) Waves
9b) Transport
10)  Kinetic Theory 55 points
11)  Kinetic Quickie 15 points
12)  Experimental 30 points
13)  Waves Quickie 10 points
14)  Applied Math/Computational - Do problem A OR B 20 points

14a) Applied Math
14b) Computational
Total - 195 points




Part TI, Question 8

1. Tokamak Orbits (20 points)

(a) (5 pts) What are the constants of the motion for particle orbits in a tokamak?
(b) (10 pts) Sketch the orbits of copassing, passing, and banana trapped ions in a tokamak.
(c) (5 pts) Write an approximate expression for the banana width of a trapped particle in terms

of its initial parallel velocity and the poloidal magnetic field. Explain brifly how you arrive at this
expression.



Do A or B only
Part TI, Question 2A

Waves Problem_ (40 points)

Consider the kinetic electrostatic wave dispersion relation in a uniform single ion
species Maxwellian magnetized plasma. In the ion cyclotron range of frequency
with sufficient density, one can approximate as &xx = Yxx' and &zz = xzz¢ where

’ = nt I
= P 3 n 7z
Xxx k" W VT‘: ’I;m l O(Cn)
w—n, k2 KT, 1 ¢~ , e
and = LA == Z =— d , Im¢>0
. ki Vi mQ; o©) N '[_” ’ z=¢ ¢

(a) For hot electrons and large ¢, for ions, indicate qualitatively the regions in
frequency space of possible wave propagation for 0 < @ < 4Qj [Do not neglect
the finite-Larmor-radius (FLR) terms here.] (10 points)

Note: If you do not know the exact forms of In , make your best guess.

(b) Derive the wave dispersion relation neglecting the FLR terms and damping,
and assuming electrons are hot. Sketch it for 0 < ® < 4Qj. Can you name the

wave? (10 points)

(c) Using the dispersion relation obtained in (b) for the real part but including the
kinetic term for the imaginary part, obtain an expression for the damping
(assuming weak damping) for o = 4Qj. Plot the damping as a function of the
wave frequency (qualitatively) for o = 4Qj. (20 points)



Part IT, Question 9B

Transport Problem:
for General Exams
~ (45 minutes)

This problem deals with formulating the analysis needed to determine the .
influence of impurities on anomalous transport. Specifically, analyze the
effect of carbon impurities on the well known ion temperature gradient
instability. (Your task is to set up the problem, but not to actually find the
growth rates.)

(a) Obtain the simplest radially local linear density responses to
[25] electrostatic perturbations by electrons, hydrogen ions, and cold
carbon impurities in a slab geometry. Consider

0]
(vn), << (vrn)y < ; < (vrn),
I

with (vr); being the thermal velocity of species j and ®/k; being the
parallel phase velocity of the waves. Finite gyroradius effects can be
ignored. [Hints: You can start with either the drift-kinetic equation”
or with fluid equations. Terms of order (k”(vTh) ul (0)2 must be kept

in the hydrogen response. A formula you might need:
IdVII fu V|‘|1 = 3no(T/m)2°]

(b) Obtain the quasineutrality condition from Poisson’s equation and
[10] apply it to this problem to obtain the local dispersion relation. (Do :
not bother solving the dispersion relation for ®.) '

(¢) What are the charge neutrality constraints which must be taken into
[5] account in this analysis? ’

(d) How does one proceed to formulate the radial eigenmode analysis in
[5] a sheared slab geometry from the local result of part (b)?



Part II, Question 10

Kinetic Theory (55 mins)

Consider a uniform electron-ion plasma with stationary infinitely massive
ions to which a steady-state constant electric field EgZ is applied. Assume
that the plasma has reached a steady state and that collisions may be de-
scribed by the Landau collision operator.

(a) [15 mins] Write the kinetic equation for the electrons including electron-

electron and electron-ion collisions. Keep the electron-electron collisions term
in symbolic terms, but derive an explicit form for the electron-ion collision

term.

(b) [5 mins] Linearize the kinetic equation under the assumption that the
electric field is weak and that the electron distribution is close to a stationary
Maxwellian.

(c) [15 mins] Take the 2-directed momentum moment of the linearized kinetic
equation, and thus relate the electron distribution function to the electric
field.

(d) [15 mins] Assuming that the electron distribution is a drifting Maxwellian,
use the result in part (c) to compute the drift and hence derive an expression
for the electrical conductivity.

(¢) [5 mins] In fact, the electron distribution is not a drifting Maxwellian. Is
the result you derived in part (d) an overestimate or an underestimate of the
electrical conductivity? Why?

Hint: The Landau form of the collision opertor is (0 fa/8t)con = — >(0/0y)-
Jo/b with

Ja/b —

npese; Jog A /d3v’ u?l ;‘31111 , {fa(V) af(v') - fo(v) 8fa(v) } ,

8medm, my OV m, OV

where u=v' — v.



Part II, Question 11

Kinetic quickie (15 mins)

The Braginskii equations, describing the classical transport of plasma in a
magnetic field, are an asymptotic limit of the full kinetic equations. State

the asymptotic ordering used.

What modifications to this ordering are needed to obtain the “neoclassical”
transport equations? What new physics is included in the neoclassical equa-
tions which is absent from the classical equations.



Part II, Question 12

Experimental plasma physics (30 minutes)

Discuss the principles of charge-exchange recombination spectroscopy. What can it
measure, what are the key elements of the atomic physics mechanism, what are some of
the key advantages of this technique and key limitations?



Part TI, Question 13

Waves Quickie,

1. (10 points) Consider a neutral plasma with equal quantities of regular
hydrogen ions, Hi+, and negative hydrogen ions, Hi- (i.e., no electrons).
Assume both ion species are fully equilibrated with each other, i.e., T+ =T~
What type of electrostatic wave could this plasma support? Explain.



Do A or B only

Part II, Question 14A

2. (20 minutes) Find the leading behavior of

/ T emalt+1/0 119 4 p)at
1

as a — +0o0.



Do A or B only
Part IT, Question 14B

Iterative Finite Difference Method for Solving Elliptic Equations:

Consider the 2D Poisson’s equation:

The boundary values and the function R are assumed given.

Suppose we wish to solve this on a 2D rectangular region of size L, X L,. using N, grid
points in the x direction and N, in the y direction. Write down an iterative finite difference

method for solving this equation, and derive an estimate for how many iterations would be
required to reduce the error by 1/e. What is a faster method for solving this equation?



