DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 13, 1996

9am. -1pm

. Answer all problems.

. The exam has been designed to require about 3 hours of work;
however we have allowed you an extra hour. Thus the total time allotted
for this day is 4 hours. Scores on questions will be weighted in proportion
to their allotted time.

. Start each numbered problem in a new test booklet. Put your name,
question # and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy
you, indicate specifically how you would proceed if more time were

available. If you do not attempt a particular problem, write on a-sheet of - -

paper "I have not attempted Problem

" and sign your name.

e . All work on this examination must be independent. No assistance
from other persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are
permitted. :



1)
2)
3)
4)
5)
6)

Problems for Part 1. May 13, 1996

Waves

Irreversible Processes
General Plasma Physics
Experimental Methods
Applied Math
Computational Methods

15 points
45 points
40 points
45 points
30 points
20 points

Total - 195 points



Part I, Question 1:
Waves [15 mins.]

A cylindrical plasma column of uniform density is immersed in a poloidally symmetric,
axial field that varies slowly in the z direction as shown in the figure.

B(z) A

Assuming that the plasma is cold and consists of only electrons and one ion species, the
dispersion relation for purely parallel propagating waves at any axial location can be written
approximately as

ki w? £ wle 4+ Qilde — w2, 0

W (wEQ)(wE)
where
K _ (R for (+),
I {L for (—), (2)
and
w? =uw}, for P=0. (3)

Note that Q, df ¢sB/msc and wgs dof 4mn,q2/ms, where g, is the signed charge of the species

and m, is the mass of the species.



Question I-1, continued

Suppose you want to use an antenna to launch purely propagating waves in this plasma
that will heat ions.

(a) [5 mins.] On which branch of the dispersion relation would you want to launch waves
and why?

(b) [5 mins.] Indicate on the diagram where would be an appropriate place to locate an
antenna and indicate where ion heating might occur for your choice. Briefly justify your
answer.

(c) [5 mins.] What condition must the density satisfy in order to insure that the launched
waves will propagate?
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Part I, Question 2:
Irreversible processes [45 mins.]

Consider a mirror machine consisting of a long, straight solenoid with magnetic field By
and with magnetic mirrors at either end with peak magnetic field B, (B1 > By).

(a) [10 mins.] Derive a condition for particles to be confined in such a device, assuming
that collisions and electric fields can be ignored. State any other assumptions you need to
make.

(b) [5 mins.] Now consider the electrons in such a device. Under what condition(s) can
the collision operator for the electrons be approximated by the Lorentz collision operator,

3f_<Zmee4logA) 1 1 0 . _3_]_" (1)

A nf
ot 8medm?

Y R Tk

def ~ 53
where cosf = o - B?

(c) [10 mins.] Supposing that electrons of energy Eo are injected into this device (e.g., by
means of a neutral beam) with v, = 0 at a rate of S electrons per cubic meter per second.
Rewrite Eq. (1) to include a suitable source term, and specify suitable boundary conditions
to model the loss condition derived in part (b), assuming that the transit time across the
machine is much less than the collision time.

(d) [15 mins.] Find the steady-state solution for f. (You may leave the solution in terms
of an integral, if you want.)

(e) [5 mins.] Discuss other physical effects that will influence the loss of electrons in a real
device.



Part I, Question 3:
General Plasma Physics [40 mins.]

Consider a perfectly conducting plasma that is immersed in a uniform z-directed mag-
netic field B = By2. Suppose a small, spherically symmetric explosion occurs that results
in a symmetric fluid velocity

v(r,t) = :—éc(t)?, (1)

where 7 is the unit vector in the radial direction and 7y and c(t) are given.
(a) [10 mins.] If the fluid density n(r,t=0) = nq (a constant), show that

n(r,t) = {no if 3 > 3r2 [dt’ c(t'), 2)
’ 0 otherwise.

[Hint: You can either use the method of characteristics or argue the answer by following a
point in the fluid.]

(b) [5 mins.] What equation governs the time evolution of the magnetic field?

(c) [5 mins.] Consider two particle trajectories, r1(t) = (r1(t),2=0) and ry(t) =
(r2(t),z=0). What can you say about the magnetic flux through the surface (annulus)
at z = 0 between r(t) and r2(t)?

(d) [15 mins.] Calculate B,(2=0,r,t).

(e) [5 mins.] Sketch the magnetic field lines in the z—z plane at some time ¢t > 0. Where
is B, most intense?



Part I, Question 4:
Experimental Methods [45 mins.]

You are using an x-ray crystal spectrometer to measure ion temperature in a tokamak.
(a) [8 mins.] Discuss the basic principles of the measurement technique, and the general
outlines of the technology used.

(b) [8 mins.] What atomic physics issues do you need to be cautious about?

(c) [8 mins.] Under what circumstances could the true temperature of the impurity species
you measure be unequal to the true temperature of the bulk ions? Estimate this effect.

(d) [13 mins.] Estimate the effects of drift-wave turbulence on the accuracy of the ion
temperature measurement.
(e) [8 mins.] Estimate the effects of a typical Mirnov oscillation on the ion temperature

measurement.
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Part I, Question 5:
Applied Math [30 mins.]

When two different waves are simultaneously present in a plasma, one of the waves can
produce a modulation of the natural frequency of the other. To model this situation, consider

the equation
d%a

poi w*(t)a = 0. (1)

Take
w?(t) = § + e(a + 2 cost), (2)

where ¢ is assumed to be small and « is a parameter. Obtain an asymptotic solution of
the equation (to lowest order in €) valid for ¢t = O(1/¢). For what values of « are there
exponentially growing solutions? This is an example of a “parametric instability.”

Here are some trigonometric identities that you may (or may not) find useful for this

problem:

sin(;) sin(62) = % cos(6; — 62) — 1 cos(6:>+ 62), (3a)
cos(f) cos(8z) = L cos(61 — 82) + 3 cos(f1 + 02), (3b)
sin(f) cos(62) = % sin(6; — 62) + Lsin(6; + 62). (3¢)



Part I, Question 6:
Computational Methods [20 mins.]

Consider the one-dimensional diffusion equation

oT 0T ()
ot 0x?’ )
where T(z,t) is the temperature, = is the distance, ¢ is the time, and D is the (constant)

diffusivity.
In the finite-difference method, the continuous temperature is replaced by the discrete
array

TP T(;,t"), 2, € jAz, = A, (2)

where Az and At are fixed space and time increments and j and n are integers. Consider
the time-advancement scheme defined away from the boundary points by

[P Ty 4 S [o (T - TR ) (- ) (T 7T, @)
where
def DAt
= (aop “

and o (0 < o < 1) is a numerical parameter without direct physical significance.

(a) [15 mins.] For a given spatial increment Az, a given value of ¢, and a given diffusivity D,
what is the condition on the time step At so that Eq. (3) is numerically stable? . =

(b) [5 mins.] What would be the advantage of using a value of 0 = 1/27 Explain.
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DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
MAY 14, 1996

9am. -1pm

. Answer all problems.

. The exam has been designed to require about 3 hours of work;
however we have allowed you an extra hour. Thus the total time allotted
for this day is 4 hours. Scores on questions will be weighted in proportion
to their allotted time.

. Start each numbered problem in a new test booklet. Put your name,
question # and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy
you, indicate specifically how you would proceed if more time were
available. If you do not attempt a particular problem, write on:a sheet of”
paper "I have not attempted Problem ____ " and sign your name. o

. All work on this examination must be independent. No assistance
from other persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are
permitted. ;



1)
2)
3)
4)
5)
6)

Problems for Part I, May 14, 1996

General Plasma Physics
MHD

Neoclassical Theory
Waves

Experimental Methods

Fundamental Plasma Physics

5 points
40 poinfs
30 points
40 points
30 points
40 points

Total - 185 points



Part II, Question 1:
General Plasma Physics [5 mins.]

e What is the “ignition point” of a fusion reactor.

e Should “magnetic fusion” reactors be designed to operate at the ignition point—or at:
some other point or points? Specify.
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Part II, Question 2:
MHD [40 mins.]

Let a magnetic field be described in cylindrical coordinates (R,0,Z), such that the
toroidal field is Be and the poloidal field is B, = BrR + Bz Z. Assume that the poloidal
field vanishes, B, = 0, and that the toroidal field Bg and the pressure p are azisymmetric—
i.e., functions of R and Z alone. Show that for an axisymmetric equilibrium p is a function
of R alone—i.e., p = p(R). From this, show that if p is zero on a toroidal boundary then
there is no confined magnetostatic equilibrium in the absence of a poloidal field.

To do this:

(a) [5 mins.] Derive the poloidal current j, in terms of F % RBo.
(b) [10 mins.] Write down the R and Z components of the force equation.
(c) [5 mins.] Show that F is a function of p alone.

(d) [5 mins.] Show that, unless p is a constant everywhere (which is actually what we are
trying to show), then

F— = —47R% (1)

(e) (10 mins.] From this prove that, unless d?(F?)/dp* = 0, p is a function of R alone.
[Comment: d2(F%)/ dp? actually can’t vanish unless p is a constant, but you are not expected
to show this.]

(f) [6 mins.] Finally, from the boundary condition p = 0 on the boundary, show that
p vanishes everywhere.
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Part II, Question 3:
Neoclassical Theory [30 mins.]

(a) [4 mins.] What is meant by a “banana orbit” of a trapped particle in a low-collisionality
tokamak? Sketch it, showing clearly the three-dimensional nature of the orbit.

(b) [7 mins.] For a conventional tokamak with a circular cross section, use the constants
of a particle’s motion to calculate the width of the “fattest” banana as a multiple of the
particle’s Larmor radius, obtaining if possible the correct numerical coefficient.

(c) [6 mins.] By using a simple random-walk argument, write down a rough estimate for the
cross-field particle diffusivity in the lowest-collisionality neoclassical regime of a tokamak.

(d) [7 mins.] Now add collisions, so that the plasma is in the “plateau” neoclassical regime.

Again using a simple random-walk argument, obtain a rough estimate for the particle diffu-

sivity in this regime.

(e) [7 mins.] For the case of electrons, explain for both neoclassical regimes whether your
- collision frequency refers to the electron—ion or the electron—electron collision frequency.

Would your formulas be different in an imaginary case in which the electron—electron colli-

sional frequency were much larger than the electron-ion collision frequency? )
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Part II, Question 4:
Waves [40 mins.]

The electrostatic wave equation for small-amplitude modes in a uniform fully-ionized
magnetized non-relativistic plasma is, for k, = 0,

J2(2s5) n\ 0o dfo
2 4 1.2 R = - -
0=k + k2 +Zzwps/ dvz/ 27wldvlw—kzvz—nﬂs [kz(zs) avl+k‘6vz , (1)

where Qs ____e quO/msca Zs é kva./Qs) and f03 = fOs(vL,vz)-
(a) [5 mins.] What is the physical significance of the Bessel function, J,(2)?

(b) [5 mins.] What is the physical significance of the resonant denominator? How is.the
singularity resolved mathematically?
(c) [20 mins.] Assume that fo,(vy,v,) is a bi-Maxwellian,

1

1 27,2
T e L 2
fOs(v.La vz) ﬂ_wi € \/7_1:’10” € ( )

Show that the dispersion relation may be written as

0= Kewe + K ®)
where
o =1+ STl S ), (42)
e =14 T ol + 67 (av)
where
G L )

Assume k, > 0.
Hints: The following relations may be useful:

;r%z— 0°°2’/T’UJ_ dv Jg (kg}l) e_"i/wﬁ. e e_'\In()\), (6)
L
where
def k2 w2 def 2kTJ_
A EuL w2 U
Also,
ok L / g O (Im ¢ > 0). (8)
VT Jo z—(

(d) [10 mins.] Use the result from part (c) to find the dispersion relation for electron
Bernstein waves, namely kj = 0 and w > [Q|-
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Part II, Question 5:
Experimental Methods [30 mins.]

This problem concerns the sheath around probes.

(a) [10 mins.] Electrically floating probe: Assume a collisionless plasma with
Maxwellian electrons at a temperature T,. Derive the nonlinear differential equation re-

lating the potential distribution to the electron and ion densities.
(b) [20 mins.] Strongly (negatively) biased probe: Derive the thickness of the “high-

voltage” sheath under the assumptions that

1. the probe is biased to repel all electrons;

2. ion impact does not cause secondary electron emissions; and

3. ions arrive at the sheath with the “Bohm” speed up.
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Part II, Question 6:
Fundamental Plasma Physics [40 mins.]

Plasma: echoes are one of the paradigm nonlinear problems that illustrate important
properties of plasma kinetic theory. In this problem, you will investigate a plasma echo in
the context of the drift-kinetic equation.

Consider a plasma in a uniform magnetic field B = BZ. The collisionless drift-kinetic’
equation for f = f(x,v,t) is

of  of

Y v yve.vit 2B,
m

of
ot 0z (1)

= =0,
ov
where v is the particle velocity in the z direction (the perpendicular particle gyromotion

has been averaged out), Vg is the EXB drift, and we will assume that the electrostatic
approximation holds, E = —V.

(a) [5 mins.] Conservation properties: Show that Eq. (1) conserves any quantity I of
the form

¥ /da:/dvg(f(a:,v,t)), (2)

where g is any function of f. [Thus, in particular, the equation conserves the entropy (where
g=flnf)]
(b) [7 mins.] Linear response: For the rest of this problem, we will ignore E, and just
focus on the effects of a specified E X B flow.
Calculate the linear response, namely the solution to
051 Oh

+ v

ot 9z =-Vg- Vf07 (3)

under the following assumptions:

1. For simplicity, consider a single Fourier component of Vg with k; = 0, which is pulsed
on for an instant at time ¢ = 0. Thus, Vg is (the real part of) : o

Vi = @ vgetFvytE2§(2). W

9. Assume that fo is a Maxwellian with a weak density gradient in the z direction; so ~ "2

fo~ (1—2/Ly) fu(v). Le., we can assume that we are looking at small scalés compared
to the density scale length, < Ly, so that V fo = —& fu(v)/ Ly is independent of
position.
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Question II-6, continued

(c) [8 mins.] Phase mixing:

o At any fixed position @ and fixed velocity v, you should have found in part (b) that
f1 is an oscillatory function of time for ¢ >0 and does not decay. Sketch a plot of the
real part of fi vs. v at several times.

e Based on these plots, consider the temporal behavior of the density
ny (@, 1) / dv f1. (5)

Explain why the density will eventually decay in time even though f; does not. What
is the characteristic time scale for this decay?

(d) [20 mins.] A plasma echo: Even after n; has decayed away due to phase mixing,
there is still information stored in fi. It is possible to extract this information by nonlinearly
interacting it with a second electric-field pulse at a different wave number k'. Assume that
at a later time ¢’ > 0 (¢’ sufficiently large that ny has decayed due to phase mixing) a second
electric field is pulsed on, giving rise to an EX B flow now chosen to be in the y direction,
with k, = 0. This second Vg pulse can thus be written as (the real part of)

V,E — g ’Ué)ei(kl’z_'-k;z)é(t _ t’). (6)

This second pulse produces no linear perturbation in f because 0fy/0y = 0. However, it
will produce a second-order nonlinear perturbation in fo, due to the nonlinear interaction
V-V f1, where f; was produced by the first pulse in V. Thus f5 could be found by solving
the equation

0hr , Of2 _ 4.

Note that f, will have Fourier components at E'=k+k.

e Show that for one of these components, the resulting density ng aof Jdv fo will “un-
phase-mix,” producing a density “echo” at a later time if k&, > k.

e What is the time at which n reaches its maximum value—i.e., what is the time of the
echo?

[Possible hint: First show that the various Fourier components of f, can be written in~ .
the form =

fa fut (,v)ek”-a:eis(t)v’ (8)

where s(t) is some time-dependent coefficient. Then find the time at which s(t) vanishes.]
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