DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 19, 1997

9am. -1pm.

e  Answer all problems, except where choices are indicated.

e The exam has been designed to require about 3 hours of work.
However, the total time allotted is 4 hours.

o  Start each numbered problem in a new test booklet. Put your name,

question # and part # on every booklet title page.

e  When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If
you do not attempt a particular problem, write on a sheet of paper "I have

not attempted Problem " and sign your name.

e  All work on this examination must be independent. No assistance

from other persons is permitted.

e  No aids (books, calculators, notes, etc.) except for an NRL formulary .

are permitted.



1)
2)
3)
4)
5)
6)

Problems for Part I, May 19, 1997

Waves

Neoclassical Theory
Nonlinear Processes
General Plasma Physics
Experimental Methods
Kinetic Theory

40 points
40 points
35 points
20 points
35 points
iO points
Total - 180 points



Part I, Question 1:
Waves [40 points]

A pulsar in our galaxy is emitting narrow pulses of electromagnetic waves in the
radio frequency regime. Assume that the interstellar magnetic field can be -

-3
ignored and that the average interstellar electron density is about 0.03 cm .

(A) [6 points] What is the electron plasma frequency in the interstellar
medium?

(B) [6 points] What is the approximate dispersion relation for the transverse
electromagnetic waves that we are detecting in the radiofrequency regime, i.e.,
f ~ 200 MHZz?

(c) [30 points] We observe a time delay, At = to-t1 = 0.001 seconds, between
the arrival of the pulse at frequencies given by f{ = 200 MHz and fo=fq-Af =
183.4 MHz, respectively. Derive a formula for the distance to the pulsar in terms -
of At, f{, and fo (or f4 and Af) and then use it to estimate the distance.



Part I, Question 2:
Neoclassical Theory [40 points]

In an axisymmetric toroidal plasma, the conservation of canonical
angular momentum is a very useful property which can be invoked to help
estimate key neoclassical transport properties such as the inward particle
pinch velocity ("Ware Pinch") and the banana excursion of trapped
particles.

[5 pts.] (a) Express the conservation of canonical angular
momentum, PC’ in terms of the poloidal flux function, y.

[10 pts.] (b) Show that oy/dt = — v-Vy by assuming v¢ =v| in part (a).

[10 pts.] (¢) Estimate the trapped-particle radial velocity by using
Faraday's Law together with the result from part (b).

[5 pts.] (d) Using B=V X A, now express PC in terms of Bg.

(5 pts.] (e) Expand around ro, the mean radius of a trapped-particle
orbit, to express the result from part (d) in terms of the
trapped-particle radial excursion,

A=sr—-ro.

(5 pts.] (f) Taking vE=V| = gl/2y (with € =1/Ro ) and Bg = Bp (poloidal

magnetic field), obtain an estimate for A in terms of the
gyroradius.



Part I, Question 3:
Nonlinear Processes [35 points]

Plasmas support numerous linear waves. In this question, we explore some properties
of these waves when weak nonlinear effects are included. For simplicity we treat a one-

dimensional system. Consider three waves
E; = Re & exp(ikjz — iwjt),

for j =1,2,3. We assume here that w; > 0. If (k;,w;) satisfies the linear plasma dispersion
relation, D(kj,w;) = 0, then the complex amplitude £; is a constant (assuming that the
wave is not linearly damped). With the inclusion of nonlinear terms, these waves become
coupled and &; become a slowly varying function of space and time.

(a) [10 points] It can be shown that the coupling is strongest if the wavenumbers and
frequencies satisfy the resonance conditions

k1 = ko + ks,

w1 = w9 + w3.
By considering the plasma fluid equations, show gqualitatively why this is so.

(b) [5 points] Considering an unmagnetized plasma, sketch the dispersion relation (w vs k)
for Langmuir waves and ion acoustic waves. Identify a possible triplet of waves satisfying
the resonance conditions.

(c) [10 points] The equations for the evolution of £; are most simply given in terms of the
action amplitude aj o< &; such that

W‘ 2
nj = w—j = pj la;|*,

where n; is the action density, Wj is the wave energy density and p; = =1 is the'sign of -

the wave energy. If we consider only temporal coupling (i.e., all the wave amplitudes are
assumed to be spatially uniform), it is found that the evolution of a; is given by '

o
T p1Kazasz,

o
—ap = —p2K*a1a3,

ot

o
—a3 = —p3K*aja3.
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Show that the total wave energy density is conserved, assuming that this is the sum of the
individual wave energy densities.

(d) [10 points] Show that the action densities (n1 + n2) and (n; + n3) are conserved and
hence show that the power transfer between the any two waves will always be in the ratio
of their frequencies. .



Part I, Question 4:
General Plasma Physics [20 points]

(a) (10 points) Sketch the orbit of a particle trapped in the earth'’s
magnetosphere, pointing out the 3 types of periodic motion. Use order-
of-magnitude estimates to estimate the ratios of the 3 frequencies associated
with these periodic motions. What is the main parameter which controls

these ratios?

(b) (5 points) For a 1 keV proton at R ~ 5Rg, in the deeply trapped limit
(remains near the equatorial plane), give an order of magnitude estimate of
the time it takes to precess around the earth once. (The earth’s radius
Rg =~ 6400 km, the magnetic field at the earth’s surface on the equator is
~ 0.3 Gauss.) Show that the precession time is the same for 1 keV electrons.

(c) (5 points) Give an order-of-magnitude estimate of the collision fre-
quency of 1 keV ions (at n = 1/ cm?®), and the number of times they will
precess around the earth before being lost.



Part I, Question 5:
Experimental Methods [35 points]

Instructions:
Answer question # 1 and
either question # 2 or question # 3

15 [10 points]
Explain two ways how to measure plasma pressure.

2. [25 points]
Design a configuration which shows how a baratron (neutral gas)
pressure gauge might be used to measure plasma pressure. As a
starting point to your answer consider the plasma sheath at a
material boundary (one of the baratrons plates) and calculate the
forces on the material due to the momentum flux and the electric
field. Assume a plasma with cold ions and warm electrons.

OR

3. [25 points]
Show that the floating potential of a Langmuir probe in an
unmagnetized plasma with Te >> T} is given by

¢ = (Te/2e) [In (21 Zjme/mj) -1]

: The potential at the sheath/pre-sheath boundary is ¢ = —Te/(2e).
Discuss the physics that sets this potential, and derive the rough
numerical value of ¢ in a one-liner.

o
5
=4




Part I, Question 6:
Kinetic Theory [10 points]

For classical transport across a strong magnetic field, the thermal conductivity <, is’
dominated by the ions, and the density diffusion coefficient D, is very much smaller than x, :

Do o (%Y 1)

K1 mi

for some power p > 0.

(a) [5 points] Determine p by making simple random-walk estimates for x,
and D Le

(b) [5 points] Explain physically why it turns out that D, <« k; rather than
D 1~ K].



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
MAY 20, 1997

9 am.-1pm.

e Answer all problems, except where choices are indicated.

e The exam has been designed to require about 3 hours of work.
However, the total time allotted is 4 hours.

e  Start each numbered problem in a new test booklet. Put your name,

question # and part # on every booklet title page.

e When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If
you do not attempt a particular problem, write on a sheet of paper "I have

not attempted Problem " and sign your name.

o  All work on this examination must be independent. No assistance

from other persons is permitted.

e  No aids (books, calculators, notes, etc.) except for an NRL formulary

are permitted.



1)
2)
3)
4)
5)

Problems for Part 11, May 20, 1997

Waves

Fusion Processes
Magnetohydrodynamics
Irreversible Processes

Computational Methods/Applied Mathematics

25 points
20 points
55 points
45 points
45 points
Total - 190 points



Part II, Question 1:
Waves [25 points] / //// o

1. [10 points] Hybrid Resonances.

Give a physical picture of the ion-ion hybrid resonance in terms of the ion drift responses.
How does this physical picture differ for the upper hybrid resonance?

2
@

—2 _— where the s labels the charge species.
w” —Q;

Hint: S=1-z

2. [15 points] Ion Acoustic Waves and the Plasma Dispersion Function, Z.

Ton acoustic waves propagate in a non-drifting, Maxwellian, unmagnetized plasma with electron
and ion temperatures Te and Tj, Assume that the damping is weak.

(2) [9 points] Obtain the dispersion relation by expanding the Z-functions, retaining terms to
leading non-vanishing order.

(b) [6 points] Comment on the dependence of the damping on Tj/Te.

203,
FeEr (1+ &,,Z,), where the s labels the

s

Hint: Recall that for a magnetized plasma, K,, = 1 + 2

charge species.



Part I1, Question 2:
Fusion Processes [20 points]

(5 points)
What types of fusion-reactions in the Sun have been the main source
of solar-heating on Earth?

(5 points)
What sorts of "man-made" fusion-reactions would be economically
most appropriate on Earth?

(10 points)

What are the most significant differences, if any, between
(1) solar fusion-fuels

and

(2) economically appropriate terrestrial fusion-fuels?



1. (a)

(b)

(c)

(d)

Part II, Question 3:
Magnetohydrodynamics [55 points]

Instructions:
Answer either question #1 or question #2

#1

(10 points) Consider a pressureless plasma (p = 0) enclosed in
a perfectly conducting wall, with - B = 0 at the wall. Show
that the magnetic energy is conserved in ideal MHD. (When you
discard terms, make sure it is clear why.) '

(10 points) Obtain an expression for the decay of the energy in
the presence of a small plasma resistivity. (Assume that the wall
is still perfectly conducting.)

(5 points) The quantity
| A-Bd'%s
v

is called the magnetic helicity, where V denotes the volume oc-
cupied by the plasma. Show that under the above conditions
(plasma bounded by a perfectly conducting wall, with #-B = 0
at the boundary), the total helicity is invariant under a gauge
transformation. (That is, the magnetic helicity is a well defined
quantity in that case).

(10 points) Show that the total magnetic helicity in the plasma is
a conserved quantity in ideal MHD.

(e) (10 points) Obtain an expression for the decay of the magnetic

helicity in the presence of a small plasma resistivity.

(f) (topoints) In the presence of tearing modes, the effects of resistivity

tend to be localized in the neighborhood of rational surfaces, where
current sheets form. To estimate the effect of a tearing mode on
the energy and magnetic helicity, assume that there is a localized
current forming a sheet of width ¢, with the magnitude of the
current density in the sheet proportional to 1/e. How does the
decay of energy and magnetic helicity scale with ¢ for small €?
What can we conclude about the conservation of these quantities
in the presence of tearing modes if the resistivity is small?

OR (see next page)



Part II, Question 3:
Magnetohydrodynamics [55 points]

Instructions:
\ it} don £1 ion #2

#2

2. Consider a solid infinitely conducting disk of mass M and radius a placed
at the origin in the z = 0 plane in a uniform magnetized plasma and oriented
normal to the uniform magnetic field Bpz. ( .6,z are cylindrical coordi-
nates.) '
a) (15 points) Show that the equation for a linearized toroidal shear
alfven wave propagating parallel to B. i. e. an axisymmetric wave with only
a toroidal velocity vs and a perturbed magnetic field By, is

821)9 2 8239
52 A5 (0.1)
where v is the alfven speed. Also show that 8By/0t = Bydvg/0z.
b) (5 points) Show that vg and By have a Dalembertian solution
vg = vaf(z —vat)g(r) (0.2)
By = —Byf(z —vat)g(r) (0.3)

for any functions f and g.

c) (10 points) Now, consider that the disk rotates with small angular
velocity Q(¢). What is the solution for vg and By in the wave that this
rotation induces in the plasma for z > 0. (Use the condition at the face of
the disk z = 0,7 < a, that vy of the plasma is equal to vy of the disk.)

d) - (10 points) Find the magnetic stress and the resultant torque on
the disk from the linearized wave from the linearized part of Maxwell stress
tensor, T = (B%I/8r — BB/4nx), evaluated at the disk where I is the unit
dvadic.

e) =. (15 .points) Use your result to show that if there is no other force on
the disk then the slowing down of the disk is given by

dQ  bBia?
dt - 4Mv A

(0.4)

where b is a numerical constant you should evaluate. Take as given that
the moment of inertia of the disk is M a?/2, and that the rate of change of
angular momentum of the disk is given by the torque on it.

(If you have difficulty with the first part you should take the results of it
as given and do the rest of the problem.)



Part II, Question 4:
Irreversible Processes [45 points]

This problem is concerned with fluctuations and transport in a gyrokinetic plasma.

A gyrokinetic plasma in the limit 7; — 0 and in the electrostatic approximation consists
of a collection of discrete gyrocenters described by the following gyrokinetic Klimontovich
equation and associated gyrokinetic Poisson equation:

8 =~ ON ~ g, 0N
—N — VN + =Ey— =
atl (R, Y|py My t) + Y| 5, + Vg + 2l a0, 0, (1a)
(V24 €, V2)p = —4mp, (1b)
where €, = wgi /w? is the dielectric permittivity of the gyrokinetic vacuum. For this entire

problem, we will consider
e thermal equilibrium (so there are no spatial gradients), and

e weak coupling (so the gyrocenter dynamics are dominated by parallel motions of the
gyrocenters).

(a) [14 points] The gyrokinetic dielectric function D(k,w) can be identified by calculating
the total infinitesimal response to an external perturbing potential:

Phw = Pro + Po = P (2)
w kyw kw D(k, UJ) .

Here ind means induced (internally) and ext means external. Calculate the gyrokinetic
dielectric function for a thermal-equilibrium (Maxwellian) plasma with no back-
ground gradients in the limit of weak coupling.

Hint: You might find it easier to work directly with Ej = —ik) ¢ instead of ¢.

(b) [6 points] Very briefly, qualitatively describe the expected spatial behavior
of the shielding cloud around a stationary gyrocenter. In particular, identify the
characteristic shielding lengths L; and L, in the parallel and perpendicular directions, re-
spectively. You may use the specific form of D(k,w = 0) to help you, but it is not necessary
(and there isn’t enough time) to evaluate any integrals.

(c) [15 points] Use the Test Particle Superposition Principle to calculate the
Fourier transform of the two-point charge-density fluctuations due to the gyro-
center discreteness: (6pdp)(k,w) = 7?7 Briefly describe the basis of this principle.

(Problem continues on nexzt page.)

II-1



Question II-}, continued

(d) [10 points] Suppose one extra test gyrocenter is placed into this thermal-equilibrium,
statistically fluctuating plasma. Using simple random-walk arguments (not detailed
formal mathematics), estimate the cross-field spatial diffusion coefficient D, for
that test gyrocenter. This will require you to estimate the total fluctuation level £ and
identify an appropriate autocorrelation time 7,.. Motivate whatever formula you use
for D, as well as your choice for 7.

Hint: Recall that for an ordinary unmagnetized thermal-equilibrium plasma the wave-
number fluctuation spectrum is

(3)

GE(K) _ T
8T 1 + (k)\D)2

Without worrying about possible divergences in the wave-number integral, the total fluctu-
ation level for that spectrum is

= [ (B ) ~ BrIGT)) (9
sﬂ‘;T ~e& =1/, (5)

Analogous arguments can be used to estimate £ for the gyrokinetic plasma. You don’t have
time to calculate the formula analogous to Eq. (3); just make an intelligent guess about its
behavior.

I1-2



Part I, Question 5:
Computational Methods /Applied Mathematics [45 points]

Instructions:
Answer either question #1 or question #2

1. [45 points]

Consider the hyperdiffusion equation
4
oU _ /18 U

PSS
where U(x,t) is the unknown, A is the (constant) hyperdiffusion coefficient, and the time ¢
and the position x are the independent variables. Assume that U(x, 0) is given on the

spatial domain 0 < x < L.

(1) (10 pts) Write down an explicit finite difference equation, valid for any interior point,
to time advance U(x,?) on the N equally spaced grid points in the spatial domain
O<x<L.

(2) (15 pts) What is the maximum time step that can be used in (1) to maintain numerical
stability.

(3) (10 pts) What boundary conditions must be supplied for U.

(4) (10 pts) Can you suggest a modification to the finite-difference scheme to allow
stable numerical time integration with a time step larger than what was found in (2)?

2. [45 points]

Evaluate to leading order the integral 1(z) for z — +<

1
I(z) = [ e~ cos(zt + zt3)dt.
0
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