DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 10, 1999

9 am. -1 pm.

. Answer all problems. Problem 4 has a choice of A or B (answer one
only).
. The exam has been designed to require about 3 hours of work; however we

have allowed you an extra hour. Thus the total time allotted for this day is 4
hours. Scores on questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name,
question # and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If you
do not attempt a particular problem, write on a sheet of paper "T have not
attempted Problem " and sign your name. = ee

. All work on this examination must be independent. No assistance from
other persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are
permitted.



1)
2)
3)
4)

5)

Problems for Part I. May 10, 1999

Whistler Waves
Irreversible Processes
Experimental
Mathematical Method
Do problem 4A OR 4B
Drift Waves

30 points
50 points '
20 points
35 points

45 points
Total - 180 points




Monday, May 10
Part I
Question I
Whistler Waves [30 points total]

During World War I, the Germans detected ionospheric whistler waves while attempting
to intercept Allied radio transmissions. The whistlers were heard as a series of declining
tones. Later studies demonstrated that whistlers are excited by lightening and can
propagate from between the northern and southern hemispheres. Given that the dispersion
relation for whistler waves can be approximated as:

2
Mpe
n2= P
|<1)ch cos6

when |[Qce cOS 0 | >> ® and when n2>> 1 ,explain :

(a) [10 points] the unique sound characteristic of the whistler waves ( assume 6 =0° ),

(b) [20 points] why the whistlers propagate between the northern and southern
hemispheres.



Monday, May 10, 1999
Part I
Question 2

Irreversible processes [50 minutes)

Consider a population of test electrons in an magnetized electron-lon plasma.
Assume that all distributions are symmetric about the direction of the mag-
netic field. Provided that the velocity of the test electrons is sufficiently
large, the distribution, f, of the test electrons evolves according to

of (10, ,1+20 . 20 >_
8t—F(v284)f+ 203 3u(1 “)auf =0 (1)

where Z is the ion charge state, I' = ne*In A/ Ame2m?, p = cosf, and v and
6 are the magnitude and direction of the electron velocity v.

(a) [15 minutes] Describe physically the terms in equation (1). Discuss the
approximations and assumptions made in its derivation. Sketch the evolution
for f from an initial delta function.

(b) [15 minutes] An alternative description of the test electrons is with the

Langevin equations for a particular test electron. Show that the Langevin
equations corresponding to equation (1) are

dv IF dp
P L Frie A(t), (2)

where A(t) is a stochastic term satisfying

ey =L, (A@AE) =Tog (1= ie=t). @

(¢) [10 minutes] Assume that at ¢ = 0, the test electrons satisfy v(t = 0) = vo
and p(t = 0) = po. Show that the mean parallel velocity, (vu), satisfies

d(vp) 2+ 7
W) — P2 (o). @
[Hint: note that v is a non-stochastic variable.]

(d) [10 minutes] Find an explicit expression of (vu). [Hint: solve for v and
substitute into equation (4).]



Monday, May 10, 1999
Part I
Question 3

Describe a diagnostic for measuring the ion temperature of a hot magnetically confined
plasma. Describe a complication to the interpretation of the measurement.



Monday, May 10, 1999
Part I
Question 4A

(choose 4A OR 4B)

Finite Difference Equations (39 min)

Consider the system of equations for v(t,z) and p(¢,z) with ¢ being a
constant:
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and consider the corresponding finite difference scheme
ot
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where v} = v(nét, jéz), pj = p(ndt, j6x), with 6 and 6z being the (constant)
time step and space step, respectively.

(1) ( 20min) Show that the finite difference method (2a),(2b) leads to a
numerical instability for finite values of ét/dx.

(2) (15 min) Suggest a modification to the finite difference scheme (2a),(2b)
that is stable and give the conditions on 6t and dz for stability.



Monday, May 10, 1999
Part I
Question 4B

(choose either 4A OR 4B)

35 points
1. Consider

d’y
wd:c?'

d
+(a—:c)zl%+by:0

25 points  (a) Find integral representations for two linearly independent solutions.

10 points  (b) What are conditions on a and b such that these representations exist?



Part I
Question 5

1. Drift waves, basic plasma physics (45 points).

(a) (25 points) In this problem you will derive the basic dispersion relation for electrostatic
drift waves in a slab plasma with a uniform magnetic field B = B2, and an equilibrium
distribution function Fy that is Maxwellian with a density gradient such that VFy =
—%Fy/L,. Starting with a simple drift-kinetic equation for the ions (keeping just the
E x B drift and parallel electric field, and ignoring the ion polarization drift or ion
polarization density), show how to derive the perturbed ion density

[T B
o=~ | 0+ €O + 75,200

where ( = w/(|kz|\/§vti), ve = +/Ti/mi, and Z is the plasma dispersion function as
defined in the NRL formulary. [You can ignore the subtleties of the analytic continuation
of the Z function, and just assume in your derivation that k, >0 and Im(w) > 0 so that
the velocity integrals can be easily related to the standard form of the Z function.]

(b) (20 points) Expand the above expression for 7; for ¢ > 1, to derive a quadratic
equation in w. In deriving this dispersion relation, assume quasineutrality 7 = 7.
(for simplicity ignoring any ion polarization density correction to this quasineutrality
equation), and using an adiabatic electron response Me X .

Solve the quadratic equation for w, and plot the two roots vs. k,cs (where cs = y/Te/m;),
illustrating the regime where the drift wave exists and the regime where sound waves
dominate. Briefly state when ion Landau damping would become important.



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
MAY 11, 1999

9 am. - 1 pm.

. Answer all problems.

. The exam has been designed to require about 3 hours of work; however we
have allowed you an extra hour. Thus the total time allotted for this day is 4
hours. Scores on questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name,
question # and part # on every booklet title page.

) When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If .you
do not attempt a particular problem, write on a sheet of paper "I have not
attempted Problem " and sign your name. g e

. All work on this examination must be independent. No assistance from-
other persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are
permitted.



1)
2)
3)
4)
5)

Problems for Part II, May 11, 1999

Collisionless Damping
Experimental
Neoclassical theory
MHD

Basic Plasma

20 points
20 points .
50 points
45 points
45 points
Total - 180 points




Tuesday, May 11
Part 11
Question 1

Collisionless Damping [20 points]

Explain what is meant by collisionless damping and indicate the parameter range in
which both nonlinear effects and collisional effects may be ignored.



Tuesday, May 11, 1999
Part IT
Question 2

(20 points)

Explain the differences between a single and a double Langmuir probe. What plasma
conditions might warrant the use of one over the other. In your discussion, note when the

I-V characteristics are similar.



Tuesday, May 11, 1999
Part II
Question 3

NEOCLASSICAL THEORY: (50 points)

This problem deals with the Coulomb collisional relaxation of a tokamak
plasma driven by a pressure gradient in the radial direction and by a parallel
electric field, Ey. Consider the associated “neoclassical” transport in the
long mean-free-path “banana regime.” For simplicity, ignore temperature
gradients.

(A) 30 points
What is the particle flux in terms of these driving forces? Specifically,
provide a simplified (heuristic) derivation of the coefficients for the
pressure gradient (—T.dno/dr) and —nokEj driving forces.

(B) 10 points
How is the classical (Spitzer) conductivity, oy, modified in this regime?
Cive a simplified (heuristic) derivation for the neoclassical current den-
sity — again specifying the coeflicients for the driving forces.

(C) 10 points

What is Onsager Symmetry as applied to this problem? How can it be
usefully applied in writing down the solutions in parts (A) and (B)?



Tuesday, May 11, 1999
Part II
Question 4
MHD Problem(45 points)

Consider MHD waves propagating in the z direction perpendicular to a
uniform By field in the z direction. k is in the z direction. The indepen-
dent variables are: py, p1, Biy, Biz, Viz, U1y Viz, SO that there must be seven
independent waves. Two are magnetosonic waves while four are degenerate
limits of the slow and intermediate waves ( i.e. w = 0) and the seventh is an
entropy wave. (All equilibrium qunatities are uniform.)

You may take as given that the perturbation of the ideal equations leads
to the equations

wp1 = pPokvie (1)

wp1 = YPpokviz (2)

wBy, = Bokvis (3)
wWpgU1e = kp1 + kBB, /4T (4)
wvy, = wvy, = wByy = 0. " F(5)

where perturbed quantities are proportional to e~*+t2,
1. (15 points) )
Find the two normal modes for the magnetosonic modes (i.e. w = Fw; )
propagating in the +z direction. Find five other normal modes giving values
of the seven independent variables for each of these modes. (You may express
the results for the ms mode in terms of w;.)

2. (15 points)

Start with an initial perturbation at ¢t = 0 of By, = Binit, p1 = P1 = By =
Uiz = U1y = V1, = 0. Show that two magnetosonic waves and two other zero
frequency wave modes are developed. (Hint: expand the initial perturbation
in the normal modes.)

3. (15 Points)
Find the velocity amplitude of the resulting magnetosonic mode propa-
gating in the +z direction.



Tuesday, May 11
Part II, Question 5
Basic Plasma (45 points)

Consider a plasma immersed in a z-directed magnetic field. Assume that there is a
source of electrons, so that under certain circumstances the electron velocity distribution
function, f., might be described rather well by the following equation:

0F _[[10,, 1440
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where I is a constant, v is the electron speed, u = v, /v is the velocity pitch angle, Z; 18
the ion charge state, and S is the source function.

Suppose also that this plasma is fueled somehow so that electrons are produced with
a tendency to have more energy perpendicular to the magnetic field than parallel to it.
The fueling might be described by a source term

(1- uz)a%f S, t), (+)

S =(1—-p*)g(v).

Note that §(v) depends only on electron speed. : ;

(a) (5 pts) What are the conditions under which equation () is a good description
of electron collisions in an infinite homogeneous plasma?

(b) (10 pts) Does the collision term in equation () conserve particles, entropy, or
energy? Explain.

(c) (10 pts) What is the steady state distribution of electron speeds?. ‘

(d) (15 pts) What is the deviation from isotropy in velocity space as t — oo? At
what speeds would the deviation from isotropy tend to be most pronounced?

(e) (5 pts) What is the steady state electron velocity distibution for g(v) = kd(v —
1), where k is a constant?

Legendre harmonics: Py = 1, P1 = p, P, = (3p® — 1)/2.
Helpful relation: 1 — p? =2(Py — P)/3.



