DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 15, 2000

9am.-1pm.

. Answer all problems. Problem 7 has a choice of A or B (answer one only).

. The exam has been designed to require about 3 hours of work; however we
have allowed you an extra hour. Thus the total time allotted for this day is 4 hours.
Scores on questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name, question
# and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If you do
not attempt a particular problem, write on a sheet of paper "I have not attempted
Problem ___ " and sign your name.

. All work on this examination must be independent. No assistance from other
persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are permitted.
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Problems for Part I, May 15, 2000

Tokamak orbits

Mirror orbits

Experimental quickie

Flux function quickie

Rayleigh-Taylor instability

Transport quickie

Do problem 7A OR 7B

a) Transport theory

b) Z >>1 Ion acoustic Wave Landau damping
Tunnelling/Stokes applied math

20 points
20 points
15 points
10 points
50 points

10 minutes

40 minutes

15 points

Total - 180 points




Part I, Question 1

Tokamak Orbits [20 points]

(a) (5 pts)

What are the constants of the motion for particle orbits in a tokamak?

(a) (10 pts)

Sketch the orbits of co-passing, counter-passing, and banana trapped ions in
a tokamak.

(c) (5 pts)

Write an approximate expression for the banana width of a trapped particle
in terms of its initial parallel velocity and the poloidal magnetic field.
Explain brifly how you arrive at this expression.



Part I, Question 2

Mirror Orbits [20 points]

(a) (5 pts)

Describe briefly how mirror confinement works, and sketch single particle
orbits. Be sure to note all drift motions.

(b) (10 pts)

Derive a trapping condition for mirror confined particles in terms of the
particle's initial coordinates and the mirror ratio.

(c) (56 pts)

Please explain briefly what fluid instability might be exhibited by a plasma
confined in a simple mirror?



Part I, Question 3

Experimental quickie (15)

Consider a low-temperature (T, ~ 1 - 100 eV, T; ~ 0 eV) isothermal
argon plasma between two electrodes, a cathode and an anode. Other than
the electrodes, the plasma touches no boundaries in the system. A volumetric
auxiliary heating method, independent of the weak DC electrode bias
voltage, ~ 5 T,, sustains the plasma by heating the electrons. (The heating
method could be microwave absorption.)

The system has the following parameters:
Cathode area, A =2 cm’?,
Plasma volume, V = 30 cm’,
Neutral argon pressure = 0.3 mTorr (n, ~10"* cm™), and
Cathode current, I = 0.1 ampere.

Estimate the ion density and electron temperature (to ~20% accuracy) using
an iterative procedure. The ionization rate coefficient for neutral argon is

given in the figure.
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Part I, Question 4

Flux Function (10 points)

Representation of the magnetic field in terms of a flux function.
Consider a magnetic field in slab geometry with B = B(z,y) independent of
z. Starting from the vector potential, V x A(z,y) = B, derive an expression
for B in terms of a flux function . Show that the magnetic field lines lie in
surfaces of constant 1.



Part I, Question 5
Rayleigh-Taylor Instability (50 points)

Consider a plasma in slab geometry supported in equilibrium against

a gravitational force -pg@ by a magnetic fleld B = B(z)2.

(a)

(5 pts) Calculate the one-dimensional radial force balance relation
describing the equilibrium. Assume Vp = 0 in equilibrium.

In the remainder of this problem you will be asked to proceed step-
by-step through a derivation of the eigenvalue equation describing
the linear stability of the equilibrium. Suggestions for simplifica-
tions along the way will help you get through the calculation in
the allotted time. We will assume that the perturbations vary as
£ = &(z) exp(—iwt + tkyy). (k, = 0). To simplify the analysis, we
will use V - v = 0 for the equation of state.

(8 pts) Give expressions for the components of the perturbed field,

Biz, Biy, By, in terms of the displacement, ¢, and equilibrium
quantities. Use V - v = 0 to simplify the expression.

(5 pts) Express p1, the perturbed density, in terms of ¢ and equi-
librium quantities, again using V - v = 0.

(12 pts) Give the = component of the momentum equation, and
simplify it by using the equilibrium equation.

(5 pts) Give the y and z components of the momentum equation.

(7 pts) Eliminate all perturbed quantities other than £, to obtain
a single one-dimensional eigenvalue equation in terms of ¢, and
equilibrium quantities.

(8 pts) Now simplify the eigenvalue equation to the case where
the eigenfunction varies slowly, 9¢,/0z < ky&s, 076 /0% < K2Es,
and where the equilibrium density profile po(z) = coel®/L), with
1/L <« k,. Obtain an expression for the growth rate. What
happens to the growth rate if L is negative?



Part I, Question 6:
Transport [10 points]

For transport in a neutral electron—ion plasma across a strong magnetic field B, the particle diffusion is intrinsically
ambipolar, D, = D;, and does not depend on the ion mass; one can take m; — oo. For that same limit of infinite ion
mass, suppose that B = 0. What happens to the particle diffusion of the plasma fluid? Does it exist? If it does, is it
ambipolar? If it does not, what physical process(es) replace it?



Part I, Question 7A:
Kinetic theory and transport E}g points]

According to Braginskii, the velocity-driven friction force R in the presence of a strong magnetic field is anisotropic:
for Z =1, one has R « 0.51, R oc 1. Thus the perpendicular resistivity 7. is greater than the parallel resistivity 7.

(a) [6 points] Give a simple physical argument why 71 > 7).

In the remainder of the problem you will study one method for actually determining 7. from kinetic theory, for an
electron—ion, Z = 1 plasma.

e For B = 0, the most direct way of determining resistivity would be to impose a current j, determine the
resulting E, then take the ratio of E and j to get 1 from Ohm’s law E = nj.

e But for B # 0, it’s actually easier to do it the other way around: start with E, determine 7, and extract the
appropriate coefficient in the tensor relation between j and E. A problem with this approach is that if both
species are free to move, they will both move with the E X B velocity and the friction force will vanish to lowest
order, making it difficult to find the effect due to resistivity.

e A trick to be used in the remainder of the problem is to decree that the ions do not move at all. Then the
friction force does not vanish and one can easily find the desired resistivity coefficient.

(b) [10 points] Impress a d.c., infinite-wavelength perpendicular electric field E| on a strongly magnetized plasma
(v/we < 1) in which the ion fluid velocity is somehow constrained to vanish: u; = 0. Assume that the frictional drag
in the electron momentum equation has the form —vu; (where u = u., since u; = 0). Using the simplest possible
form of the momentum equation, show as succinctly as possible that the resulting perpendicular current has the form

' W Vi, x5+ (L) B )
L™\ Grw We = + We Lpe

iy i®

where all quantities refer to electrons and w, is signed.

(c) points] Equation (1) gives the form of the response to E, but the value of v remains to be determined.
[Note that in Eq. (1) the first-order term does not actually involve v, but the second-order term does, so by comparing
the direct solution of the kinetic equation with the form of j 3_2), one can determine the proper value of v.]

By ordering w, = O(¢~1) (where ¢ & v/w, < 1):

e Show how to do perturbation theory on the kinetic equation (assuming a global Maxwellian background) so

as to determine jS_l) and jf). First set up the zeroth-, first-, and second-order equations for the distribution
function.

e Solve the first-order equation and verify that you recover the j 5_1) of Eq. (1).

e In the remaining time, discuss how you would solve the second-order equation and find j 5_2). Carry through the
calculation to the extent you have time, but don’t exceed theghd minutes alloted for this part of the problem.
However, do show mathematically that electron—electron collisions do not contribute to j S?) . (In that proof, you

may use known properties of Cee and Ce;.) . :

I-2



Part I, Question 7B
Electron Landau damping of ion acoustic waves [40 points]

[Parts (b-d) can be done independently of part (a).]

(a) (15 pt) Starting from the Vlasov equation in an unmagnetized plasma, show that the
dispersion relation for electrostatic waves assuming quasineutrality can be written in the

form
2

0= (14 ¢Z(C)]

s Vts

where s denotes particle species, vy = Ts/ms, (s = w/(|kvsv/2), and Z is the plasma.
dispersion function, and the other notation is standard. [In your derivation, you can
ignore the subtleties of the analytic continuation of the Z function. Just show how the
velocity integrals can be related to the standard form of the Z function for Im(w) > 0
and rely on the Z function being defined to properly continue the solution to arbitrary
w.]

(b) (10 pt) Consider the case of two species: ions of charge Z and electrons. Expand
this dispersion relation to lowest non-trivial order in the limit vy < w/|k| < vee to get
the lowest order dispersion relation for ion acoustic waves. You can ignore higher order
terms involved with electron Landau damping in this part of the problem.

(c) (5 pt) Show that vy < w/|k| is a good approximation for Z > 1 even if T; ~ Te.
Provide a brief physical argument about whether ion Landau damping will be important
in this case.

(d) (10 pt) Now repeat step (b), but keep the next order correction needed to get electron
Landau damping, in the limit of weak damping. Writing the frequency as w = wp + dw,
where wy is the lowest order ion acoustic-wave frequency you found in part(b), calculate
the relative damping rate 6w/ |wol.

(This problem is important in certain laser-plasma instabilities.)



Part I, Question 8

Tunnelling/Stokes applied math (15 points)

Consider the wave equation

d>p
— 42z =0
dz? 4
Draw a Stokes diagram and calculate transmission and reflection coefficients for
an incident wave from the left. The Stokes constant for a second order zero is

S = /2.






DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
MAY 16, 2000

9am.-1pm.

. Answer all problems. Problem 6 has a choice of A of B (answer one only)..

. The exam has been designed to require about 3 hours of work; however we
have allowed you an extra hour. Thus the total time allotted for this day is 4 hours.
Scores on questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name, question
# and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were available. If yousdo
not attempt a particular problem, write on a sheet of paper "I have not attempted
Problem " and sign your name.

. All work on this examination must be independent. No assistance from other
persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are permitted.
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Problems for Part II, May 16, 2000

Magnetic field diffusion quickie
Parametric applied math
Bernstein wave

Nonlinear dynamics
Diagnostics

Do problem 6A OR 6B

a) Wave quickie

b) Tokamak essay

10 points
45 points
45 points
55 points
15 points

15 points

Total - 185 points




Part II, Question 1
Magnetic field diffusion quickie [10 points]

Write down an expression for the magnetic field diffusion coefficient. Approximately how
far can the magnetic field diffuse in a time 1 /Vei (where v is the electron-ion collision
frequency). Express your result relative to the collisionless skin depth. For 8 ~ 10%, is
this distance small or large compared to the ion gyroradius?



Part II, Question 2
Parametric applied Math (45 points)

A complex three-wave parametric instability mode has the form
1 w iA . 2
— 42 v —4idwt
w(t)—t/odw<l_w) e

with t = time and A > 1.
Find the time dependence of 1(t) for early (¢ < 1) and late (t > 1) times.
Numerical factors are secondary, first find the time dependence.



Part II, Question 3

Wave-driven density perturbations [45 points total]

a) [15 points] Derive an expression for the perturbed density of species, s, driven by a
general electromagnetic wave in a uniformly magnetized, homogeneous plasma in terms
of the plasma susceptibility, %s’ for species, s.

b) [15 points] For a quasineutral plasma consisting of a single ion species and electrons,
derive an approximate form for the ion Bernstein wave dispersion relation (assuming
purely perpendicular propagation, T, ~ Ty, and retaining only the lowest order
contributions from electrons in the electrostatic limit).
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¢) (15 points] Use the results of parts I and II to demonstrate that the quasineutrality
condition is preserved through first order in the electron and ion density perturbations
driven by this wave in a typical tokamak plasma. Comment on the relative magnitude of
the perturbed ion density to the equilibrium ion density.



Part II, Question 4:
Nonlinear processes and Fokker—Planck equations [55 points|

Scan the entire problem before you begin. Each of the parts is independent (except for common notation). The
principal things you are asked to show are in boldface italics.

The Hasegawa-Mima equation in the absence of a background density gradient (wx = 0) is
(1-— VZ)%—(': +Vg-V(=V%p) =0, where Ve ¥ 2 x Ve (1a,b)

Because of the nonlinearity, short-scale fluctuations can beat together to give long-scale ones, and vice versa. Thus,
one can write

= 7 + (Pmid + 95 ) (2)
~ —— ~—
long intermediate wavelengths short

wavelengths  (ignored in this problem) wavelengths

where, for example,

pla,t)= Y, eT%pq(t),  P(mt) = > e on(t). (3)

g small k large

(Tt’s conventional to use g when referring to the long wavelengths, and to use k when referring to the short wave-
lengths.) In this problem you will be taken step by step through the use of Fokker-Planck methods and other
arguments to discuss how the long scales P affect the short scales @.

(a) [7 points] Suppose that one has somehow initially excited ¢ fluctuations of short wavelength (large wave num-
ber k): o(t =0)=@. It is claimed that the nonlinear Hasegawa-Mima equation can then spontaneously generate
long-wavelength fluctuations @ (wave number ¢ < k). By Fourier-transforming a general advection term of the
form V(x) - Vy(z), where V' and ¢ are arbitrary functions, explain how small q’s can be generated by the
nonlinearity.

(b) [5 points] Now suppose that long-wavelength fluctuations % have indeed been generated, giving rise to a large-
scale velocity field V = 2 x V. The advective effect due to V' will react back on the short scales . From Eq. (1a),
the relevant advection equation is

g7 —
- v2)6—f +V . V(-V2p) =0. (4)
For constant V, argue that the small scales evolve according to
0k, . dot [ K -
—_— AL, = Q = | ——— . . —
Bt + iQrdr = 0, where k <1+k2 k-V (5a,b)

(c) [6 points] More generally, V really varies slightly on long space scales X and slow time scales T: V = V (X, T),
where

V(X,T)=pY , €7%Z X [igeg(T)]- (6)

q small

[We follow a standard convention and use (X ,T) rather than (z,t) in order to emphasize the long-wavelength,
low-frequency nature of V] Thus one has the ray equations
E - 8Qk(XaT) _‘& _ aﬂk(X)T)
ar -~ ok . dT ~— 0X
Ezplain in simple qualitative terms the physical significance of the ray equations. (This is a general
physics question. The answer has nothing to do with the Hasegawa-Mima equation per se or with nonlinearity.)

(7a,b)

(Problem continues on nezxt page.)
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Question II-4, continued

(d) [8 points] Show that the short-scale advection equation

op

o +V.V(-V¥) =0 (V.-V=0) (8)

(1-V")>-

conserves the short-scale enstrophy

ef 1 o 1
w2 [al Vet (el = 3 R0+ Rl ©)
k large™~ -~ ——
g =

by multiplying Eq. (8) by — V2, integrating over space, possibly integrating by parts, and ignoring any surface-terms
that arise. Begin with the V term just in case you run out of time.

(e) [30 points] The constancy of ), Wy is analogous to the normalization integral of a probability density func-
tion (PDF) f: [ dx f(z) = const. (= 1). Thus Wy ~ f(z) plays the role of a PDF for wave number k. Just accept

this statement, even if it seems unusual to you.
Because of the nonlinearity, turbulence arises, so the advection velocity V becomes a random variable (denoted by

tilde): V — V. Therefore the advection frequency, Eq. (5b), is also a random variable Q. Assume that it has zero
mean, () = 0, and autocorrelation time 7,.. For definiteness, take

(2 (X, T+ (X, T)) = (QR(X, T))e 1T/, (10)
That assumption turns the ray equation (7b) into the random Langevin equation

dk

T = ~V(X,T). (11)

(analogous to the one for classical Brownian motion z = ¥). From the Langevin equation (11), show how to

construct the Fokker—Planck diffusion equation for Wk,
BWk 0 8Wk
Wk _ 9 .p.. Dk 12
aT ok * ok (12)

e Consider only the second Fokker—Planck moment (Ak Ak). (Assume that if you calculated the first moment,
it would obey the usual relation that turns the Fokker—Planck equation into the standard form of the diffusion
equation.)

e Briefly explain all steps. (But don’t write out all details of, say, reducing double time integrals to single ones.
unless you really need to.)

o Average (Ak Ak) over both the statistics of ﬁk as well as X. You should obtain a wave-number diffusion tensor

i = 2 (%;:)2 > (i) we@a, (13)

q small

where the Cartesian coordinate system is relative to q, so that ky =G -k, ky =2+ X k. o

o Hint: Parseval’s formula is

/_ w%A(X)B(X) A(X)B(X) = ZA B}. (14)
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Part II, Question 5

Diagnostics [15 points]

Describe how you would make a tokamak diagnostic for THREE of the
following:

Electron temperature
Ion temperature
Plasma current

Impurity content

SOl

Fusion power



Part II, Question 6A

Density Measurements in Plasmas [15 points]

Explain how you could use the O-mode (ordinary mode) in the microwave
frequency range to measure the line-averaged density of a quasi-neutral
positron-electron plasma. Give an expression relating the electron density to

a physical quantity you can directly measure.



Part II, Question 6B

Tokamak essay [15 points]

Describe how a tokamak works, in as much detail as time allows. What are
the approximate values of the main parameters of a large tokamak like TFTR

(e.g. magnetic field,plasma current, temperatures, densities, etc).



