DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART |
MAY 19, 2008

9a.m.-1pm,

. Answer all problems.
Problem 5 has a choice of (A) or (B). Answer only one.

. The exam has been designed to require about 3 hours of work; however we have
allowed you an extra hour. Thus the total time allotted for this day is 4 hours. Scores on
questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name, question #
and part # on every booklet title page.

D When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. |f you do not attempt a

particular problem, write on a sheet of paper "l have not attempted Problem " and
sign your name.
. All work on this examination must be independent. No assistance from other

persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are permitted.



1)
2)
3)
4)
5A)

5B)

Problems for Part |, May 19, 2008

Planar Diode

High Harmonic Fast Waves in NSTX
Neoclassical Theory

Cylindrical Plasma

Applied Math

OR

Computational Plasma Physics

40 points
40 points
40 points
20 points

40 points
Total - 180 points




PALILGE G008 PART 1, QUESTION 1
1. [40 points|

A planar diode in which the cathode is a copious mitter of electrons is limited in
the amount of current it carries because of space-charge effects. Assuming divergence-free
steady-state flow in one dimension, one can derive the important “3/2” law for space-
charge limited diodes, namely, that the maximum current is proportional to the voltage
to the 3/2 power. This “3/2” law works for 1-D flow of a non-neutral stream of ions or
electrons.

In this problem, suppose a small variation: Suppose instead that a source of ions
situated at £ = 0 emits ions in the z direction at speed vy rather than at rest. Suppose
further that there is a voltage drop of ¢y bewtween x = 0 and z = L. The ions are
extracted at z = L, and the question is what is the maximum steady state ion current J
that can be extracted as a function of vg, ¢g, and L, as well as ion charge ¢ and mass m.

(a) (5 pts) For asteady state flow of ions beginning with velocity vy at © = 0, sketch

the potential as a function of z. [You can do this step now based on physical
intuition, or you can solve exactly and come back to this after you do part (d).]
(b) (15 pts) Show that the potential must be of the form:

S = albw — 6 45,

where « is a constant which is function of the current ./, where ¢); is a con-
stant which is a function of ¢q and vy, and where § is a constant of integration.
Determine o and ¢ ;.

Hint: a simple identity you might find useful is:

dg(z) d?p(z)  d {1 {d(b(”f“)r }

dr  dz?  dz)2/| dz

(c) (5 pts) Argue from physical principles that the maximum steady state current
will be extracted when [ is set to zero.

(d) (15 pts) Derive an expression for the saturation current J. Show that, in the
limit vy — 0, the saturation current obeys the familiar “3/2” scaling law.



Part I, Question 2

High Harmonic Fast Waves in NSTX — 40 points total

Recent experiments on NSTX have shown that the core heating efficiency of high
harmonic fast waves (HHFW) depends on the launched parallel wave number, k, , and
the edge density. The density at which the launched waves can begin to propagate is
proportional to B x k//2 / w* (this comes from the n//2=R cutoff of the waves).
Furthermore, for these waves, the energy flow is directed primarily parallel to the vessel
wall rather than radially into the plasma. In essence, for a given density and equilibrium
magnetic field profile, waves with a lower k, begin to propagate closer to the antenna
than those with higher k, , thereby potentially losing more power in the edge due to
interactions with the nearby vessel structures.

In this problem, by calculating the direction of the group velocity for the high harmonic
fast waves in NSTX, you will show that the launched power flows mainly parallel to the
equilibrium magnetic field, and hence the vessel itself, in the edge regions of the
discharge. You may treat the edge region as a cold plasma slab, with the equilibrium
magnetic field pointing in the Z-direction. You may also assume that E, ~ E;~ 0 and that
the plasma is composed only of deuterium and electrons. Other parameters of interest
include the edge density (3 x10'2 cm™), the wave frequency (30 MHz), the parallel wave
vector (k, = 14 m™), and the edge magnetic field (3 kG).

1.) [5 points] In the cold plasma limit, write down or derive the dispersion relation for the
high harmonic fast waves in terms of R, L, and S.

Vv

Vel

2.) [15 points] Derive an expression for intermsof n |, ny/, and S.

3.) [15 points] Give approximate numerical values for w/Qp, S, ny, and n,. Note, to
estimate n , you may assume that n, >> ny to simplify the dispersion relation you derived
above.

4.) [5 points] Finally, give a numerical estimate of the approximate angle between the
group velocity and the vessel wall.



PART 1, QUESTION 3

Neoclassical Theory [40 points]

In an axisymmetric toroidal plasma, the conservation of canonical
angular momentum can be used to estimate key neoclassical transport
properties such as the inward particle pinch velocity (“Ware Pinch”) and the
“banana” excursion of trapped particles in the long-mean-free-path banana
regime. The conservation of canonical angular momentum, P, can be

expressed in terms of the poloidal flux function, 1, as follows:
P. =mRv, + =

[10 pts.] (a) Show that /0t = - v*V by assuming v, =v; .

[10 pts.] (b) Estimate the trapped-particle radial velocity by using
Faraday’s Law together with the result from part (b).

[5 pts.] (c) Using B = VxA, now express P, in terms of B,.

[5 pts.] (d) Expand around 1y, the mean radius of a trapped-particle
orbit, to express the result from part (d) in terms of the trapped-
particle radial excursion,

A=sr-r

[10 pts.] (e) Taking v; = v= e v (with & =t/R;) and By = B, (poloidal

magnetic field), obtain an estimate for A in terms of the

gyroradius.



Part I, Question 4
MHD Quickie (20 points)

Consider a cylindrical model of a large aspect ratio toroidal plasma, with cylindrical
coordinates (7,0,z), and with periodic boundary conditions imposed on the magnetic field:
B(r, 6,2)|.-1 = B(r,6,2)| =0, L = 21tRy, where we identify ¢ = Roz. Suppose that there is a
uniform field in the z direction, B,Z , and a current density in the z direction, j,(1-r*)Z,
such that g = 1.5 at » = 0. (We have chosen our normalization here to make » = 1 at the
plasma boundary.)

(a) (9 pts.) Give an expression for g(r). Whatis g at » = 1 (the plasma boundary)? For
field lines on the g = 2 surface, give an expression for the poloidal angle along the field
line, 8(¢;0,), where 8= 6, at =0. Let rs be the radius of the ¢ = 2 surface. Relative to
the motion of the field lines at r = rg, do the field lines at » = r; + 87 (87 small) rotate in
the poloidal direction more rapidly or less rapidly, as a function of ¢, than those at » = rs.
What about the field lines at » = rg - 677

(b) (8 pts.) Now add a small perturbing field, 8 B, with 6B, = &(r) B, sin(28 - ¢). Along
an unperturbed field line trajectory on the ¢ = 2 surface, what is dB.(¢, 6y)? Sketch the
shape of the flux surfaces near » = r; in the presence of the perturbatton. (You do not
need to give a quantitative estimate of the magnitude of the effect, just a qualitative
picture of what the flux surfaces look like.) Sketch the unperturbed surface with a dashed
line.

(c) (3 pts.) On the same picture, sketch the perturbed and unperturbed flux surfaces at the
q = 1.75 flux surface.



PART 1, QUESTION 5A

Generals Math 40 points
Consider
d*y .dy
— +3—+ay=0
T2 T T

a) Find two possible asymptotic behaviors at z — 0

b) Find two possible asymptotic behaviors at  — +oc0

¢) Find a Fourier-Laplace integral representation for the solution
d) Find an integration contour if y(0) = 1.



PART 1, QUESTION 5B

Computational Methods (40 points)

Analysis of a Finite Difference Equation:
Consider the scalar one dimensional diffusion equation, where D is a constant, and U is
the unknown function of time and one spatial dimension; U(t,x),

U a'U
— =D 1
at dx’ &
Now consider the following finite difference approximation to Eq. (1):
n+ n (S t n+ n+ nt n n n
Ut =Us+ G (65 -2U7" + UZ) +(1-0)U}, -2U7 +UJ)] @

where 0<0<1 is a parameter. Here, we use the (standard) notation that U7 = U(¢",x,),

where /" = n &, and x; = j Ox, with ot and dx being the timestep and zone size,
respectively.

1. (15 points) Show that the finite difference equation (2) is_consistent with the
partial differential equation (1) in the limit as & and dx - 0 for all values of 6 in
the range (= O=< /.

2. (15 points) Use Von Neuman Stability Analysis, or another method of your
choosing, to calculate the range of values of & for which the method is stable for

different values of 6.

3. (5 points) What would be the special benefit of using the value @ = 1/2 in
Equation (2)?

4. (5 points) Indicate how you would solve equation (2) each timestep for the new
time value U""'.



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 20, 2008

9a.m.-1pm.

. Answer all problems.

) The exam has been designed to require about 3 hours of work; however we have
allowed you an extra hour. Thus the total time allotted for this day is 4 hours. Scores on
guestions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name, question #
and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. |f you do not attempt a
particular problem, write on a sheet of paper "l have not attempted Problem " and
sign your name.

. All work on this examination must be independent. No assistance from other

persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are permitted.



Problems for Part |l, May 20, 2008

Experimental Methods
Experimental Plasma Physics
General Plasma Phenomena
Irreversible Processes

MHD Stability

40 points
35 points
30 points
35 points
40 points
Total - 180 points




Part 11, Question 1
Experimental methods (40 points)

Consider a highly ionized, magnetized (B = 1 kG), pure hydrogen plasma column inside a
thin-walled (1 mm) 10-cm-ID, 1-m-long Pyrex pipe. The plasma temperature and density
are nearly constant with radius and axial position. (A plasma sheath exists at the Pyrex
pipe wall.) The mean plasma parameters are: Te = 100 eV, T; = 0.1 eV, ne = 10" em™.

Scientists want to look at fluctuations at frequencies between the ion acoustic and LH
ranges. The expected fluctuation levels in Te, ne and B are of order 0.1, 0.01 and 0.001 of
their mean values.

The probes they have decided to use are:

1) an electrostatic probe of area 0.1 cm?,

2) a capacitive probe (placed outside the Pyrex pipe) of area 1 cm’

3) a single-turn Mirnov coil of area 0.5 cm?, placed outside the Pyrex pipe

a. What frequency range, in units of Hz, will the experimentalists need to consider.
(10 pts)

b. What parameters should the experimentalists measure with the electrostatic
probe. What is (are) the expected signal size(s) due to fluctuations in each of Tk,
ne and B? (10 pts)

¢. What causes the fluctuating signal measured with the capacitive probe? (Describe
the physics.) What is the expected signal size due to fluctuations in each of Tk, n,
and B? (10 pts)

d. What parameter(s) could the experimentalists measure with the Mirnov probe?
What is the expected signal size due to fluctuations in each of Te, ne and B? (10

pts)

Hydrogen plasma

0 Pyrex pipe
- ‘\
Electr Oﬁtat'g Capautw x Mirnov
prok E‘ prob loop



Part 11, Question 2
Experimental plasma physics
35 points
1. Using the Langmuir probe characteristic shown below:
a) Identify the ion and electron saturation current regions in the probe trace.
b) Indicate the approximate values for the floating potential and space potential.
¢) If the ion species is argon, use the results of (b) to estimate the electron temperature.
d) If the probe tip (the conductor immersed in the plasma) is I mm in diameter and 5 mm
long, what is the approximate value of the plasma density (again, assume singly charged

argon for the ionic species)? Assume Te >> Ti. Are sheath expansion effects likely to
affect the accuracy of the density estimate? Explain.

a) 1(mR)Y .vs. volts
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Part 11, Question 2
Experimental plasma physics

(2)

In some plasma, one ¢an consider doing interferometry with the extraordinary mode. Itis
of interest to calculate the error occurring in the deduced density if we use the expression
for the ordinary mode index of refraction when really the mode used is the extraordinary
mode. Consider perpendicular propagation and calculate an approximation for the
difference in refractive index between the ordinary and extraordinary wave for w >> w,,
Calculate the fractional error in using N°, = | — X, where (X = mzplmz), to determine
density if the extraordinary mode is used in a plasma with n = 10 m®, B=6T, and f =
2x10" Hz. .

Other useful expressions: N’ =1 — [X(I-X)/(I-X-Yz)], Y =QJ/w, Qis the
cyclotron frequency.

AD = w/cf (N'l)dl.



PART Il, QUESTION 3

General Plasma Phenomena (30 points)

Consider the motion of a relativistic electron with charge —e, rest mass m, and kinematic energy

(7 — 1)mc? moving through a static, constant-amplitude, helical wiggler magnetic field specified by

BY,(x) = —By[cos(ky2)é, + sin(kyz)é,]. (1)
Here, By, = const. and Ay, = 27 /ky = const. are the wiggler field amplitude and wavelength,
respectively, v = (1 + p?/m2c?)!/? is the relativistic mass factor, and p = ymv is the kinematic
momentum.

Denote the particle orbit that passes through the phase-space point (x,p) at time t' = ¢ by
(x'(t'), p'(t'), and assume that the transverse particle velocity is equal to zero in the absence of
wiggler field, i.e., v, = 0 = vy, when B, = 0.

(a)(15 points) Make use of the single-particle equation of motion to show that
Y (") = v = const.
vh(t) = awgcos[sz'(t')]
7
V() = aws sinfku? ()]
v
vl (t') = v, = const. (2)
where a,, = eBy,/mc?k,, is the normalized wiggler amplitude, and 2/(t') = z + v, (t' — t).
(b) (10 points) The spontaneous emission spectrum of the radiation emitted by the electron in the

+z diresction is given by
1l 425 _ e?w?
T dwd)  4Am2c3T

where w is the emission frequency, k is the wavenumber, 7 = ¢’ —¢ is the shifted time variable, and

T 2
/0 drlv,(T)é, + v;('r)éy] explik,2' (1) —iwT]| , (3)

T = L/v, is the length of time that the electron is in the interaction region (length = L). Here,
d%I/dwd() is the energy radiated per unit frequency interval per unit solid angle.

Make use of Egs. (2) and (3) to calculate a closed expression for the spontaneous emission
spectrum in the vicinity of the 'upshifted’ emission frequency, w — kv, ~ +kyv,.
(c) (5 points) Assume that the radiation emission corresponds to a light wave in vacuum (w = ck;).
Show that the spontaneous emission spectrum calculated in Part (b) is a maximum for radiation

wavelength A, = 2w /k, given by

(1+4a3)
== ———)\ , 4:
LB+ 8:) 4)
where 8, = v,/c, Ay = 27/ky, and v = (1 + 829 + a2)/2. Therefore, for wiggler wavelength

Aw = 2 cm and amplitude a,, = 0.3, a 3 GeV beam of electrons (v &~ 8000) is expected to produce

radiation with wavelength \, ~ 1.7A.



PART Il, QUESTION 4

2008 Plasma Physics General Exam

Irreversible Processes (35 minutes)

Consider a particle in a constant magnetic field, B = Byz, subject to a drag force at the
rate v (taken to be a constant rate here), and to a rapidly fluctuating electric field in the
= direction that we treat as white noise, (E.(t)E.(t")) = 2Cod(t — t).

a. [5 points]. Write down a stochastic differential equation describing the evolution of
the particle’s velocity in the # and § directions (perpendicular to B).

b. [10 points]. Write down the corresponding Fokker-Planck Equation for this problem.

c. [15 points]. From the Fokker-Planck equation, derive conservation laws for the time
evolution of (v2), (vZ), and (v,v,).

d. [5 points]. Calculate the average energy of a particle in statistical steady state.



MHD Long Problem (40 points)

In this problem, you will be asked to evaluate stability of ideal force-free equilibria

(described by j = u(r)B) using energy principle and conservation of magnetic

helicity.

(a) (15 minutes)

Prove conservation of magnetic helicity defined as H = IA -BdV, where A

is vector potential of magnetic field, B=V x A. To be simple, V is a singly
connected volume surrounded by a superconducting boundary with no

interceptions of magnetic field.

(b) (10 minutes)

The energy integral of such plasmas due to displacement &(r) is given by

SW = J‘dV{?: ﬂ( &, +28, k) +yp(V-E)

=2(&, - Vp)(&; - 6) - u(r)(&; xB)-Q, ]

where Q =V x(§xB), pis plasma pressure, kis magnetic curvature vector

B
k=b-Vb, b=—. Among five terms in the energy integral, identify

B

possible signs of each term.

(c) (15 minutes)
Derive a sufficient stability condition for the force-free equilibria using

conservation of magnetic helicity.
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