DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION - PART I
MAY 9, 2011

9AM.-1P.M.

Answer all problems.

Problem 1 has a choice of (A) or (B). Answer only one.
Problem 5 has a choice of (A) or (B). Answer only one.

Part | has been designed to require about 3 hours to complete. However, an
extra hour has been allowed. Thus the total time allotted for Part | is 4 hours.
Scores assigned to the questions are intended to be proportional to the time
required to obtain the solution.

Begin each numbered problem in a new test booklet. Put your name and the
Question # on every booklet title page.

If you do not have adequate time to answer questions in a form that is
acceptable to you, please describe how you would proceed to solve the
problem if more time were available.

If you have not attempted a particular problem, please write on a sheet of paper
“I have not attempted Problem # ” and sign your name.

All work on this examination must be completed independently. No assistance
from other individuals is permitted.

No aids (laptops, calculators, books, etc.) except for an NRL formulary are
permitted.



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION - PART |
MAY 9, 2011

9AM.-1P.M.

Problems for Part |

(1A) Introductory Plasma Physics (Quickie)

OR 15 Points

(1B) Applied Mathematics (Quickie)

(2) Waves and Instabilities 45 Points
(8) Plasma Diagnostics 20 Points
(4) Neoclassical Physics 60 Points

(5A) Experimental Plasma Physics
OR 40 Points
(5B) Applied Mathematics

Total - 180 Points




Part 1 — Question 1A

Introductory Plasma Physics (Quickie)
Drift Motion [15 pts]

A current, I, flows in the +z direction. It has a uniform radial distribution inside r = r, and
is zero for r > r,. (See the figure below.) Additionally, there is a uniform electric field (in
all of space), also pointing in the +z direction.

Consider two low energy ions, one initially beyond r, and the other inside r,. (Low
energy means that the gyroradius, p;, of an ion at r =r, is p; (o) <<1,.) Assume that both
ions, each of charge g, have zero azimuthal velocity and are initially not within a
gyroradius of r,.

(a) Graph the amplitude of the magnetic field generated by I as a function of radius  for
0 <r < 51, and the magnetic-field gradient as function of 7. (3 pts)

(b) Sketch each ion’s motion for E = 0. What drift causes this motion? (3 pts)

(c) Sketch each ion’s motion for E > 0 but E << vjp B(r,) where vy is the ion’s initial
velocity and B(r,) is the magnetic field at r,. (4 pts)

(d) Does either ion ever reach r = 0? If yes, sketch the subsequent motion. (Hint:
Consider a particle initially at rest at r = 0 then one with a small initial velocity in the r
direction.) (5 pts)




Part 1 - Question 1B

Applied Mathematics ( Quickie) [15 Points]
Consider

d?y

(l?i + Q(IL)'!/) =0

Assume an exponential form for the solution 1) = €% and find S and a
condition on @ such that you obtain asymptotic solutions. Find S to second
order. At what values of @ do the solutions clearly fail?



Part 1 — Question 2

Waves and Instabilities

Langmuir Waves [45 points]

In this problem you are asked to rederive the dispersion relation w(k) for Langmuir waves

without using the Vlasov equation, assuming there is no dissipation. For simplicity, assume

also that the electron motion is one-dimensional and neglect the ion motion.

(a)

[5 points] Identify the reference frame K’, where the wave potential ¢ is static.
Using energy conservation for the electron motion in that frame, express the local
particle velocity w(p,wo) in frame K’ as a function of the local wave potential ¢(z)

and of the velocity wp outside the field (where ¢ = 0).

[25 points] The spatial density dn of electrons from a given interval (w,w + dw)
is inversely proportional to |w|, i.e., |w|dn = |wo|nofuw(wo)dwy, where ng is the un-
perturbed total density, and f,(wp) is the corresponding velocity distribution. Using
w(ip, wo) from the solution in (a), show that the linear dispersion relation can then be

expressed as

wy (Y fo(v) 2
F R /_oo o —w/mE =" @

where fo(v) is the distribution of velocities v = wq + w/k, and resonant particles
are neglected. Hint: Calculate the total charge density, substitute it into Poisson’s
equation, and linearize the latter with respect to ¢, neglecting particles with very

small wy.

[15 points] Simplify the above dispersion relation by expanding the integrand in
kv/w and keeping only the leading-order thermal corrections. Show how the familiar

dispersion relation is obtained for (dissipationless) Langmuir waves.



Part 1 — Question 3

Plasma Diagnostics (Quickie) [20 Points]
(a) Derive the Thomson scattering cross-section.
(b) Calculate the fraction of photons incoherently scattered from a 1 cm path
length of laser beam from a plasma with an electron density of 2 X 20 m™

with a solid angle of detection of 0.01 sr.

Useful constant: Classical eleciron radius = 2.8 X 10™"°



Part 1 — Question 4

Neoclassical Transport and Drift Waves [60 Points]

This problem has two parts: Part 1 deals with a magnetically-confined
axisymmetric toroidal plasma with the driving forces being a scalar pressure
gradient in the radial direction (assume no temperature gradient) and a parallel
electric field, E;. Part 2 deals with basic drift waves in a simple slab geometry.

Part 1: Estimate the terms in the “neoclassical” two-by-two matrix that relates
the fluxes -- trapped-particle flux and charge flux (i.e., current density) to the
driving forces (density gradient and parallel electric field) in the “banana regime.”

[25 pts.] (a) Give the trapped-particle flux using simplified (heuristic) estimates
of the coefficients for the driving forces.

[15 pts.] (b) Give a simplified (heuristic) estimate for the neoclassical current
density by specifying the coefficients for the driving forces.

Part 2: Electrostatic drift waves (and associated instabilities) are often invoked
when neoclassical theory prove inadequate to account for the higher levels of
transport often observed in toroidal experiments.

[15 pts.] (a) Estimate the perturbed density responses for the kinetic “adiabatic”
electrons and the “cold fluid” ions respectively. Combine to give the
simple drift-wave dispersion relation.

[5 pts.] (b) Justify the use of the “quasineutrality condition” relating the
perturbed ion and electron density responses in part (a).



Part 1 — Question 5A

Experimental Plasma Physics [40 Points]

Using the single-tip Langmuir probe characteristic shown below:

(a) Identify the ion and electron saturation current regions in the probe trace.
(b) Give approximate values for the floating potential and space potential.

(c) The ion species is argon (atomic mass 40), singly charged. Use the Langmuir
trace to estimate the electron temperature.

(d) If the probe tip (the conductor immersed in the plasma) is 1 mm in diameter
and 5 mm long, what is the approximate value of the plasma density (reminder:
singly charged argon)? Assume Te >> Ti. Are sheath expansion effects likely to
affect the accuracy of the density estimate? Do you see any evidence for sheath
effects in the probe trace? Explain.
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Part 1 — Question 5B

Applied Mathematics [40 points]
Consider
d*y  dy
da?  Tax YT
(a) Find two possible asymptotic behaviors at  — +o0. (10 pts)
(b) Find two possible asymptotic behaviors at z — 0. (10 pts)

(¢) Find a solution y(z) with y — 0 for z — +o00 and give normalized
asymptotic expressions for  — 400 and z — 0. (20 pts)



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION - PART I
MAY 10, 2011

9AM.-1P.M.

Answer all problems.

Problem 1 has a choice of (A) or (B). Answer only one.
Problem 3 has a choice of (A) or (B). Answer only one.

Part 1l has been designed to require about 3 hours to complete. However, an
extra hour has been allowed. Thus the total time allotted for Part | is 4 hours.
Scores assigned to the questions are intended to be proportional to the time
required to obtain the solution.

Begin each numbered problem in a new test booklet. Put your name and the
Question # on every booklet title page.

If you do not have adequate time to answer questions in a form that is
acceptable to you, please describe how you would proceed to solve the
problem if more time were available.

If you have not attempted a particular problem, please write on a sheet of paper
“l have not attempted Problem # ” and sign your name.

All work on this examination must be completed independently. No assistance
from other individuals is permitted.

No aids (laptops, calculators, books, etc.) except for an NRL formulary are
permitted.



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION - PART Il

Problems for Part Il

(1A) Kinetic Effects (Quickie)
OR

(1B) MHD Physics (Quickie)

(2) Plasma Waves

(3A) General Plasma Physics
OR

(3B) Computational Physics

(4) MHD Physics

(5) Irreversible Processes

MAY 10, 2011

9AM.-1P.M.

20 Points

30 Points

40 Points

45 Points

45 Points

Total — 180 Points




Part 2 —Question 1A

Kinetic Effects (Quickie) [20 Points]

Most of the plasma ions incident on a solid surface will eventually come back as
cold neutrals, but a fraction of them may be promptly reflected. Here we consider
a simple 1-D model of this prompt reflection process. Consider the distribution
function of ions f (x, v, t) for x > 0, bounded by a wall at x = 0.

(a) Write the flux of incident ions into the wall as an integral involving the
distribution function.

(b) Write down boundary conditions that model these reflections, assuming that
the probability of an incident ion being reflected is a (independent of energy) and
that the reflected energy of an ion is a fraction B of its incident energy.



Part 2 —Question 1B

Magnetohydrodynamics (Quickie) [20 Points]

In this problem, you are asked to derive the MHD equation of motion and Ohm’s
law, and to estimate the conditions under which they are valid.

(a) [5 Points] Write down the equations of motion for electron and ion fluids,
assuming that their pressures are scalar, and that the ions are singly
charged.

(b) [5 Points] Ignoring the electron mass, derive the one-fluid MHD equation of
motion and the generalized Ohm'’s law from the force-balance equations in
Part (a).

(c) [5 Points] What are the two conditions under which the generalized Ohm’s
law obtained in Part (b) can be reduced to the regular form of Ohm’s law used
in MHD.

(d) [5 Points] Are these conditions typically satisfied in fusion plasmas? Can
these two conditions be combined into a single condition?



Part 2 —Question 2

General Phenomena
Plasma Waves [30 Points]

Consider an extraordinary electromagnetic wave propagating perpendicular to a uniform
magnetic field Bye,. The plasma is cold and homogenous.

(a) [20 Points] Show that the dispersion relation has a resonance near the upper
hybrid frequency.

(b) [10 Points] Prove that the wave polarization is approximately electrostatic near
the upper-hybrid resonance frequency.



Part 2 —Question 3A

General Plasma Physics [40 Points]

This problem will consider the collisionless damping of a nearly cold plasma by resonant
electrons and the self-consistent reaction of the wave on the electron velocity distribution
function.

(a)

(b)

(c)

[12 points] Beginning with the 1D fluid equations for a cold infinite homogeneous
plasma with stationary ions, derive the dispersion relation for small plasma oscillations
at the plasma frequency wf, = ¢’ng/eom. You may assume that the oscillations are
small enough that the electron density may be written as n(z,t = 0) = no+7(z,t = 0),
where 7i(z,t = 0) may be treated as a small perturbation. Similarly, the electron fluid
velocity may be assumed to be a small perturbation.

[8 points] For what initial conditions of the perturbed electron density, 7i(z,t = 0),
and perturbed electron velocity, #(xz,t = 0), will the excited electric field evolve as
E(z,t) = Egcos(kx — wpt)?

[5 points] Suppose now that the electrons are not perfectly cold, but are nearly cold
with a velocity distribution f(v,t). Suppose that the tail of the electron distribu-
tion function interacts with the wave such that it causes the wave to damp through
Landau damping. Consider the case in which as ¢ — oo, the wave is not completely
extinguished, but rather E(z,t — oo) remains finite. Sketch for this case f(v,t — 00).
[15 points] Show that an approximate condition for E(z,t — oo) remaining finite
despite Landau damping is:

w
Vg > C—=

k3

9/
ov

o w

b
v=w/k

where vy, = \/qFEo/mk and fo(v) = f(v,t = 0) and ¢ is a constant of order 1. Explain
briefly any assumptions made in arriving at this result.



Part 2 —-Question 3B

Computational Physics:
Finite Difference Equation with Non-constant Thermal Conductivity [40 Points]

Consider the non-linear diffusion equation for the temperature T' in one-dimensional slab

geometry:
or o or
—=—x—, (1.0)
o ox| oOx
where the thermal conductivity is proportional to the temperature gradient raised to the power p,
oT\’
X=X [—) . (1.1)
Ox

Here, ¥, is a constant. Perform a linear analysis of the stability of the backward-time centered-space

(BTCS) finite difference method where the thermal conductivity term is evaluated at the old time level,
i.e.,

w1+
"=t —yP° +5ti[;(“ ol } ; (1.2)
ox Ox

In Eq. (1.2), the superscript nis the time index, ¢" = ndt, and centered spatial differences are to be
used. Assume the temperature is slightly perturbed from its equilibrium value, 7" = T° + 7" , Where

T° satisfies the steady-state equation

’

ol (or'Y or
ox o Ox Ox

and 7" < T°. What are the conditions for stability in the limit that the perturbation wavelength is
small compared to the background gradients?



Part 2 —Question 4

Magnetohydrodynamics [45 Points]

(a) (5 points) A plasma cannot be confined by a purely toroidal axisymmetric field.
Explain why this is the case in terms of the particle drift trajectories. The field is
B =B,V¢ in cylindrical coordinates (R, ¢, z), where R is the major radius (R = 0 is the
symmetry axis), ¢ is the toroidal angle, and z is the coordinate in the vertical direction.
To simplify things, take B, to be a constant (independent of spatial coordinates).

(b) (15 points) Now let’s look at this in terms of the MHD equations. Using the same
field as in part (a), solve for j, from the MHD equilibrium equation (with v = 0), where j,

is the component of j perpendicular to the magnetic field. Assume that B is sufficiently
small that we can neglect the effect of the pressure driven current on B;. Give an
explicit expression for V-j in terms of By and the derivative of the pressure. How does
the expression relate to part (a) of this question?

(c) (10 points) Now let’s add a toroidal current. How does this help us? Explain this
both in terms of the drift trajectory picture and in terms of the effect on the MHD
equations.

(d) (15 points) Write j =AB, where Ais a function of position to be determined.

Assuming the same toroidal field as in (a), with finite poloidal field, what is the equation
for A that follows from the requirement that the current density must have zero
divergence? Give an explicit solution of this equation in the large aspect ratio limit for
an equilibrium with circular flux surfaces, p= p(r), where ris the minor radius. Express

the solution in terms of By, dp/dr and the strength of the poloidal field B,. What

determines the constant of integration in the solution?



Part 2 —Question 5

Irreversible Processes [45 points]

In magnetic confinement, one usually assumes good flux surfaces. But
microturbulence can produce small, random magnetic fluctuations that can
sometimes break the surfaces. If that happens, magnetic field lines can wander
stochastically in the volume, and particles can get rapidly from the inside to
the outside by streaming along the stochastic field lines.

Consider a simple slab model with a z-directed, constant magnetic field
B,z. Let z be a direction of inhomogeneity, like a radial coordinate in a
tokamak. In the absence of any additional magnetic fields, the flux surfaces
are sheets in the y—z plane.

(The model we are building is not entirely realistic; it does not include
magnetic shear. That does not matter for the purposes of this problem.)

Now add a small random magnetic perturbation §B;(z,t). The tilde de-
notes a random variable. (The z dependence would arise from the microscale
structure of some underlying turbulence. Assume that §B, is statistically
stationary in time.) The field line now wanders randomly in the z direction
according to B

0T _ 0B,(2,1)
9z B,

Furthermore, a test particle moves along the field line according to

= §b(z,1). (1)

A
— = (%), 2
= =5() )
where £ is the distance along the field line and v(t) is random because the par-
ticle can experience collisions. Because the field line is almost in the z direction
(the magnetic perturbation is small), it will be adequate to approximate the
parallel direction by the z direction and to write

dz

— =0(t). 3

— =) 3

You may assume the standard (1D) Langevin model for the effects of collisions
on the parallel motion of the test particle.
If one combines Egs. (1) and (3) by using the chain rule, one finds an

equation for the z motion of the test particle:
Z—f _ B(H)0b(E), 1) = 5V (8). (4)

We will use this equation to explore the stochastic motion of the test particle
in the z direction.



