DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART |
MAY 14, 2012

9am.-1pm.

. Answer all problems.
Problem 1 has a choice of (A) or (B). Answer only one.

. The exam has been designed to require about 3 hours of work; however we have
allowed you an extra hour. Thus the total time allotted for this day is 4 hours. Scores on
questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name, and
question # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do not attempt a
particular problem, write on a sheet of paper "l have not attempted Problem "and

sign your name.

. All work on this examination must be independent. No assistance from other
persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are permitted.



1A)

1B)

4)

5)

Problems for Part |, May 14, 2012

General Plasma Physics (Quickie)
OR

Applied Mathematics (Quickie)
Waves and Instabilities

Magnetic mirror

Landau Damping

Neoclassical Physics

10 points

50 points

40 points

40 points

40 points

Total - 180 points




Part I, Question 1A

Quickie: General plasma physics (10)

A single Langmuir probe is made of tungsten and has a surface area 1 cm?2. It is
immersed in a large plasma, bounded by remote tungsten walls. The plasma consists
of equal numbers of positrons and electrons. Each species has a central density of
108 cm3 and temperature 1 eV. There are no neutral particles in the plasma.

1) Sketch the Langmuir probe characteristic, giving absolute values for the
scales on the abscissa (I) and ordinate (V). (4)

2) What is the plasma potential with respect to the walls? (2)

3) What is the power density on the probe for biases of +50 and -50 V with
respect to the wall? (4)



Part |, Question 1B

Applied Mathematics ( Quickie) 10 Points

Consider

d?y
12 +Q(z)y =0
Define an Anti-Stokes line and explain why it is important. IHow are
these lines distributed near a first order zero of Q7 Second order? First

order singularity?



Part |, Question 2

Waves and Instabilities
Electrostatic waves in relativistic plasma [50 points]

Assuming real w and k, calculate the longitudinal dielectric function e(w, k) of ultrarelativis-

tic electron plasma with the unperturbed electron distribution given by

noc’

fulo) = ) = gz exe (<F). [ 4 foohdo =

Hints: (i) Note that fo(p) is a three-dimensional momentum distribution, with p = |p|.
Choose k along z and use p; = p cos for the momentum component along k; here ¢ is the
polar angle in the associated spherical coordinates. (ii) As usual, when taking integrals, you -

may find it convenient to employ the identity z/(z — 1) =1+ 1/(z — 1).

(a) [20 points] Write down the Vlasov equation for f(x,p). Use it to show that

Agre?
k2T

W
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c(w,k) =1+

(b) [15 points] How should one understand the above (formally divergent) integral
over §? Find both ¢ = Ree and for €’ = Im € explicitly, by integrating over p and over

s = cosf. Show that ¢ exhibits a logarithmic singularity at u = 1.

(c) [15 points] Sketch both €’ and €” as functions of u. For this, you may want to derive
asymptotics of e(w, k) at w < 1 and at v > 1 first. Alternatively, you should be able
to figure out what the result is, roughly, based on your knowledge of nonrelativistic

plasmas. In either case explain your results qualitatively.



Part I, Question 3

Generals Question 2012
May 2, 2012
1. [40 pts] Consider ions in a magnetic mirror machine with mirror axis in the 2
direction. Suppose a mirror ratio R. Furthermore, suppose that the magnetic field near
the axis can be approximated as

p_ { Bo(l+2"/LM3, if 2" < "L
~\ Bo(1 + ™)z, if 2" > L™ .

where we expressed the mirror ratio as R = 1+ ¢™, where c is a constant an n is an even

integer. Let Wi and W), be the perpendicular and parallel energies as the midplane
(z = 0) is crossed.

(
(

a) [8 pts] Derive the trapping condition in midplane (z = 0) energy coordinates.
b) [3 pts] Sketch the trapping condition in the W, o-W)q plane.
)
)

(c) [5 pts] Show that the turning points for trapped ions obey: z3./L* = Wo/W 10.

(d) [4 pts] Suppose now that the magnetic field is changed slowly such that simultaneously
L — aL and By — BBy. Calculate the new perpendicular midplane energy W1, in
terms of a, 8, Wio and Wy.

(e) [8 pts] Suppose again that the magnetic field is changed slowly such that simultane-
ously L — aL and By — By. Calculate the new parallel midplane energy W|’|0 in
terms of a, B, W1o and W).

(f) [6 pts] For what initial midplane coordinates will particles initially trapped become
untrapped as a result of this slow change in the magnetic field. Write your answer in
terms of o, 8, Wio, W)o and R.

(g) [2 pts] Sketch this condition in the Wio-W)o plane.

(h) [4 pts] Show that there are at least some initially trapped particles that become
untrapped for 8 < al/™.



Part |, Question 4

Landau Damping (40 Points)

Consider the electrostatic perturbation of a homogeneous, unmagnetized plasma. Assume
ions are motionless. For simplicity, we also assume that & is in the z — direction and
k> 0. The dispersion relation of the perturbation is

2

w a
L= —l——iﬁdu =0,
k* <, w/k—u du
Where g, = x, j ‘ dv dv,_f,, is the unperturbed electron distribution function integrated
n
el

over v and v_.
v z

a) [7 pts] The subscript “L” in the integral f du indicates that the integral is
L
carried out along the Landau contour. What is the Landau contour?

b) [18 pts] From the dispersion relation show that if g is a monotone-

decreasing function of u*, i.e,, udg,, / du < 0, then the system is stable with
respect to the perturbation.



Part I, Question 5

Neoclassical Physics 40 points

This problem deals with the “neoclassical” properties of a plasma for
a simplified model axisymmetric toroidal plasma with the driving forces
being a pressure gradient in the radial direction (assume no temperature
gradient) and a parallel electric field, E;.

[10 pts.]

[20 pts.]

[20 pts.]

(a) Give the dimensionless measure of collisionality
characterizing the long-mean-free-path “banana” regime and

briefly explain the terms used.

(b) Sketch what is meant by a “banana orbit” of a trapped
particle in the “banana” regime showing the 3D nature of the
orbit.

(a) State (without proof) how the classical (Spitzer)
conductivity, oj, is modified in the “banana” regime.

(b) Give a simplified (heuristic) estimate for the neoclassical
current density in the “banana” regime — specifying the
coefficients for the driving forces.

(c) Explain the physics of the “bootstrap current” and give two
reasons why it is important.

(b) Give the trapped-particle flux in the “banana” regime using
simplified (heuristic) estimates of the coefficients for these
forces (radial density gradient and parallel E-field).



DEPARTMENT OF ASTROPHYSICAL SCIENCES
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
MAY 15, 2012

9am.-1pm.

8 Answer all problems.
Problem 1 has a choice of (A) or (B). Answer only one.

Problem 5 has a choice of (A) or (B). Answer only one

. The exam has been designed to require about 3 hours of work; however we have
allowed you an extra hour. Thus the total time allotted for this day is 4 hours. Scores on
questions will be weighted in proportion to their allotted time.

. Start each numbered problem in a new test booklet. Put your name, question #
and part # on every booklet title page.

. When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do not attempt a
particular problem, write on a sheet of paper "l have not attempted Problem " and
sign your name.

. All work on this examination must be independent. No assistance from other
persons is permitted.

. No aids (books, calculators, etc.) except for an NRL formulary are permitted.



1A)

1B)

5A)

5B)

Problems for-Part I, May 15, 2012

Experimental Methods (Quickie)
OR

Waves and instabilities (Quickie)
Irreversible Processes

Applied Mathematics

MHD Physics

Computational Methods

OR

Experimental

10 points

45 points

40 points

45 points

40 points

Total - 180 points



Part I, Question 1A

Experimental methods “quickie” - 10 pts.

a) Consider an Ohmically heated, large aspect ratio, tokamak plasma. What
quantities must be measured in order to determine the global energy confinement
time tg? What diagnostics would you use to measure these quantities?

b) Now consider a similar tokamak plasma, heated by radial injection of a neutral
beam, with Ppeam>> Ponmic. What additional information would you need for a
determination of te? Are there conditions under which your estimate might be
prone to error?



Part ll, Question 1B

Waves and Instabilities

Quickie: Low-frequency limit [10 points]

Assuming one-dimensional nonmagnetized plasma, consider the low-frequency limit of elec-

trostatic perturbations, such that both ions and electrons can be considered hot.
(a) [5 points] Write down the dispersion relation for this case and solve it for k.

(b) [5 points] Suppose a boundary condition E(z = 0) = Ey. Using the result obtained
in (a), find E(z > 0), assuming that plasma is infinite at > 0. What is the physical

effect that the solution describes?



Part Il, Question 2 Irreversible Processes 49 Points

In the 3D guiding-center plasma model of a very strongly magnetized plasma
(gyroradii of both electrons and ions are assumed to be zero), guiding centers
stream along a constant magnetic field B while E x B drifting across the field.
Calculate the cross-field diffusion coefficient D, of a test guiding
center in a stable, near-thermal-equilibrium plasma by following
the steps below.

Notes:
1. Parts (a), (b), and (¢) are independent.

2. You can do part (b) and much of part (d) even if you don’t know how
to do the other parts.

3. If you do not feel you have time to do the requested mathematics, get
partial credit by providing a detailed discussion of what the issues are
and a detailed outline of how you would go about attacking this problem.

(a) [12 points]

Show how to derive an approximate expression for D, in terms of a sum-
mation over discrete wave numbers of the electric-field fluctuation spectrum
(tensor) Cp(w), which is the Fourier transform of (0E,(t)0Ex(t")) with respect
tot —t'. The convention is, for arbitrary function A(t),

Alw) & 1 Ca e A(t). (1)

(b) [5 points]

Given two random functions JA(t) and 6 B(t), assuming statistical station-
arity, and denoting Fourier transformation with respect to time by a hat, show
that

s the Fourier transform with

where T' is the total integration time and C (w) i
) may be useful in part (c).

respect to 7 of (8A(t + 7)B*(t)). The result
(c) [18 points]

Find an expression for Cy(w) o (0 By 0 Ey)(w) [which enters into part (a)].
If a dielectric function D(k,w) enters your formula, give an explicit formula

for it. Note that you are dealing with a magnetized plasma here, so D(k,w)
differs from the one familiar from unmagnetized linear theory.

(6A(w)dB*(w)) = TC(w), (2)
)
t (2

(Problem continues on nezt page.)



(d) [10 points]

Combine your results from parts (a) and (c) to get an explicit expression
for D,. Convert the sum over discrete k’s to an integral over k. Show that
you obtain a result of the form

k2

where x(k) is a dimensionless function of k that you should have determined in
part (c). Show that the resulting integral [including x (k)] diverges at large k| ,
large ky, and small k. [If you did not determine x(k), then (for partial crecdit)
carry on the discussion assuming that x(k) = 1.| Discuss (thinking deeply)
the possibility of curing the divergences by inserting appropriate cutoffs (but
don’t try to carry out the resulting integrals).

(e) [+10 points] Optional Bonus/Penalty: This calculation differs from
others with which you may be familiar in that it contains a long-wavelength
divergence (at k; — 0) that, evidently, is not cured by dielectric shielding.
State clearly what physics is involved here and describe mathematically what
you would do to fix the problem in a way that does not involve a cutoff.

e If you answer this correctly, you will get a bonus of up to 10 extra points,
depending on the completeness of your answer.

e If you answer it incorrectly, yon will be penalized at least 5 points and
possibly as many as 10 points (so think carefully before trying to answer
this optional part).



Part Il, Question 3

Applied Mathematics [40 points]
Consider
d’y dy
—Y 4 gy =0
dz? u dr Y
(a) Find two possible asymptotic behaviors at + — +o0. (10 pts)
(b) Find two possible asymptotic behaviors at z — 0. (10 pts)

(¢) Find two independent integral solutions (20 pts)



Part Il, Question 4

MHD Long Problem 45 Points

In this problem, you will be asked to derive minimum magnetic field
to stabilize Kelvin-Helmholtz instability. Suppose that an incompressible.
ideal fluid has a flow shear at a sharp boundary at = = 0 as shown in the
figure where a proper frame is chosen so that U = (U,0,0) at z > 0 while
U= (-U,0,0) at z < 0.

-U

1. (8 minutes) Assuming the perturbation velocity, v(z, 2), is irrotational
and in the (2,2z) plane, so that a velocity potential, @(a.2), can be
used:

v ="V (1)

When ¢ = ¢ (2)e* @ at 2 > 0 and ¢ = ¢o(2)e == at 2 < 0, derive
equations for ¢; and ¢, and find their solutions. Here, k is real and ¢
is complex. Let A = ¢y(z — +0) and B = ¢y(z — —0).

2. (8 minutes) As shown in the figure, suppose that the boundary per-
turbation is given by £ = de***=< where d is the amplitude. Use the
kinematic boundary condition of

D
Uy = _6 (f_)_)
Dt
for both z = +0 and z — —0 to express A and B in terms of . Here
D/ Dt denotes total derivative.



3. (8 minutes) Express perturbed pressure, py[= p(z — +0)], in terms of
A and po[= p(z — —0)], in terms of B, respectively. Use the dynamic
boundary condition,

m = pa, (3)

to derive dispersion relation for Kelvin-Helmholtz instability. When is
it unstable?

4. (8 minutes) Impose a uniform magnetic field By along the flow direc-
tion. Express the perturbed magnetic field in the & direction, B, in
terms of ¢ for z > 0 and for z < 0, respectively. [Vector identity:
Vx(axb)=a(V:-b)-b(V-a)+(b-V)a—(a-V)b.]

5. (8 minutes) Derive and solve the dispersion relation by adding the
perturbed magnetic pressure to the pressure balance,

BBy B2 By

” + P2 Ui ) 4
o o )

where fi is the vacuum permeability, B, = B,(z — +0), and B, =
B,(z — —0). What is the minimum magnetic field to stabilize Kelvin-
Helmholtz instability?



Part Il, Question 5A

Computational Methods (40 points)

Analysis of a Finite Difference Equation:
Consider the scalar one dimensional convection equation, where a is a constant, and U is
the unknown function of time and one spatial dimension; U(1,x),

—+a—= (1)

Now consider the following finite difference approximation to Eq. (1):

ot
n+l n n+l/2 n+l/2
j:l/Z =U - a—a(uj:l =Uj; ) (2)

Here, we use the (standard) notation thatU} = U (#",x;) , where (" = n &, and x, = j dx,

with & and dx being the time step and zone size, respectively. The half-integer subscripts
refer to evaluating the quantity halfway between two grid or time points by simple
averaging, i.e.,

Ujan = %(U/ +Uj. )’ oyt = %(Uf * g ) 3)

l. (15 points) Show that the finite difference equation (2) is_consistent with the
partial differential equation (1) in the limit as & and dx = 0. How does the
leading order truncation error scale with & and ox?

2. (15 points) Use Von Neuman Stability Analysis to calculate the range of values of
&t for which the method is stable for different values of a:

3. (10 points) Indicate how you would solve equation (2) to get to time step 7 +1
once the solution at time step # is known?



Part ll, Question 5B

Experimental 40 Points

1. Consider an interferometer at wavelength, A = 10.6 um (CO; laser), and operates
in the presence of spurious vibrations of the optical components. To compensate for
these vibrations, interferometry is performed simultaneously using the same optical
components at a wavelength of A = 0.633 um (HeNe laser). The HeNe
interferometer is affected much less than the CO2 interferometer by the plasma

phase shift, but still somewhat. If ®>> @y for both wavelengths:

(a) Derive an expression for the plasma line integrated density, J.Ne dl, in terms
of the phase shifts, ®c and ®ye , of the two interferometers.

(b) If ®ye can be measured with an accuracy of +/- 7, what uncertainty does this
introduce into the plasma density measurement?

(c) Thus evaluate the fractional error in measuring a 1 m thick plasma of density
1014 cm-3, assuming ¢ is measured exactly.

(d) Calculate the phase shift for the plasma described in part (c).

Useful expression: @ = KA _[ Ne dl, Kis a constant.



