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DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART 1
May 12, 2014

9:00 a.m. — 1:00 p.m.

e Answer all problems.

e Today’s exam has been designed to require three hours of work
(180 points). However, you are allowed one extra hour, so the total
time allotted for today is four hours. The scores on the questions will
be weighted in proportion to their allotted time.

e Start each numbered problem in a new test booklet. Put your name and
the question number on the title page of each booklet.

e When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were avail-
able. If you do not attempt a particular problem, write on the booklet
“I have not attempted Problem ___” and sign your name.

e All work on this examination must be independent. No assistance from
other persons is permitted.

e An NRL formulary is permitted. No other aids (books, calculators, ete.)
are allowed.
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I.1: Mirror Confinement [40 points]

Consider a magneto—electric particle trap in the region —L < z < L. To
accomplish this trap, suppose that there is a magnetic field in the z direction
such that

2’2 .
5 | Bo [1+(R—1) <§)} if L <z <0,
BO; leZO

Here the mirror ratio R is a constant greater than one. Suppose that there is
also an electric potential

0 if z<0,
22\ .
¢ = ¢0<f2-> if0<z< L,
oo if z > L.

(a) [5 points] Describe how ions might be trapped in this configuration of
magnetic and electric fields. Would electrons also be trapped in the same
fields?

(b) [10 points] Derive a trapping condition for confined particles in terms
of the particle midplane perpendicular energy W, and midplane parallel en-
ergy W)o, where these energies are defined at the axial location z = 0.

(c) [5 points] Sketch the trapping condition in Wi0-W)o space. If trapped
ions of charge state g were scattered in pitch angle but not in energy through
collisions, from what end of the device would they leave? Does this answer
depend on the ion energy? Please explain very briefly (in one sentence).

(d) [10 points] Suppose now that both the electric potential and the magnetic
field are slowly varying functions of time. Show that the second adiabatic
invariant can be put into the form

V‘[/'”lo/2 (2um + zg) = const.

Here zy and zp are the turning points in the regions z < 0 and z > 0,
respectively.
You may wish to use (but you do not really need) the integral

1
/ ds(1—s3)2 =",
0 4

(e) [6 points] Suppose that the potential ¢o(t) is slowly changing in time,
such that ¢o(t = T) = v¢o(t = 0). Suppose that the magnetic field By(t) is
slowly changing in time, such that By(t = T) = aBy(t = 0). Write down the
condition that at time T a particle initially trapped will become untrapped,
leaving the trap on the side z > 0.

(f) [5 points] For a trapped particle with initial energies W, > W and
Wio > g¢o, give a prescription for removing the particle on the side z < 0
without any collisions taking place and by changing only ¢, and Bj.
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I.2: Geometrical Optics [15 points]

Consider electron whistler waves traveling in a cold, stationary, collisionless
plasma along a 2z axis that is parallel to a static magnetic field. Assume that
the index of refraction is large (n > 1), and that the wave frequency w is
much less than the electron cyclotron frequency |€2|. Suppose that both €,
and the plasma density depend on z slowly, such that the geometrical-optics
approximation is satisfied.

(a) [5 points] Show that the dynamics of an envelope of such waves is similar
to the dynamics of a nonrelativistic particle with a z-dependent mass. Write
down the corresponding dynamical equations explicitly.

(b) [10 points] For a stationary whistler wave, calculate how its electric-field
amplitude evolves along z.



1.3: MHD [50 points]

In this problem, you will be asked to derive the condition for entropy pro-
duction through a perpendicular MHD shock.

(a) [10 points] From the ideal MHD conservation laws

0
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derive the Rankine-Hugoniot relations for stationary perpendicular MHD
shocks where the magnetic field is parallel to the shock front:

pVa = piV, (4)
P+ V2+B—§—P+ V2+—B—% (5)
2T P2Vs 2t = rnrTmv 2110’
V2 B? vZ B?
T _p+ 22 2y, = (L_p e B 20y (6)
v-1 2 Ho v—1 2 Lo
B2V2:Blvl- (7)

Here V is the velocity field, B is the magnetic field, P is the plasma pressure,
p is the density, and y is the ratio of specific heats. The subscript 1 (2) denotes
quantities upstream (downstream) of the shock.

(b) [15 points] Upon defining ps/p; = X, one has V5 /V) = 1/X and By/B; =
X. Show that P,/ P, is given by both of the following equations:

B 2V -V Lo xe

P 7<1+7ﬁ1> <1 X)M+ 1(1 X% +1, (8)
B _ -1 2 N 12 g
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where the Mach number is defined by M = V1//VE + V2. Here the sound
speed Vg = +/7P1/p1 and the Alfvén speed V4 = Bj//wop1- The upstream
beta is defined as B; = Py/(B2/2u).

(c) [6 points] Show that X — (y+1)/(y — 1) as M — oo regardless of the
value of 5.

(d) [20 points] Derive the condition for entropy, defined here as s = In(P/p"),
to increase across the shock so that ss —s; > 0. Discuss its physical meanings.




I.4: Experimental Methods [10 points]

(a) [5 points] Consider an Ohmically heated, large-aspect-ratio tokamak
plasma. What quantities must be measured in order to determine the global
energy confinement time 77 What diagnostics would you use to measure
these quantities?

(b) [5 points] Now consider a similar tokamak plasma, heated by radial
injection of a neutral beam with Pyeam > Ponmic- What additional information
would you need for a determination of 7g? Under what conditions will your
measurement be accurate?



1.5: Neoclassical Theory [35 points]

Consider the simplified ion temperature equation

3 T
é"ﬂfét— =-V. qg. (1)

(Ton subscripts will consistently be omitted.) In a collisional plasma, according
to Braginskii, the ion heat flux is (in the limit § af v/w, < 1 and for Z =1)

q=qy+qx+4qu, (2)
where
q) = —nr) V)T, (32)
5 ¢\ ~
gL =-ns V. T, (3c)
with
K| = 3.9v /v, (4a)
KL= 2p2y, (4b)

where v % 771 is the inverse of Braginskii’s collision time. In a torus (assumed
here to be axisymmetric), the cross-field heat flux is enhanced over the classical
value —nk ) T /Or by a Pfirsch—Schliiter-like effect. Discuss the calculation
of the Pfirsch—Schliiter enhancement to heat flux as follows.

Note: The five parts of this problem are largely independent.

(a) [9 points] Discuss why there should be an enhancement. Give a
step-by-step outline of how one should proceed to do this calculation.
At the very least, your outline should cover what to do at each of the orders
8%, 6%, and 62, and there may be multiple steps at each order. Do not do any
mathematical calculations in this part.

Note: This calculation does not involve any considerations relating to an
electric field, so do not invoke that in your discussion.

(Problem continues on next page.)




Question I-5, continued

Consider the {r,0, ¢} coordinate system shown in Fig. 1, and assume the
model magnetic field B = By + B, with

e(r) By Ry By
B =g - - , 5
TS Y R 1+ €(r) cosf (5)
and €(r) & r/Ro. Turn your above outline into mathematics and

calculate the enhanced heat flux as follows.
e If necessary, you may assume an equilibrium with a scalar pressure.
e Assume that ¢ < 1 (small inverse aspect ratio).
e It can be shown that

— T is a flux function to zeroth order in d;
—V°qX:_qx‘V1nB2. »

You may assume that these results are known.

C/L

FIG. 1 Coordinate system for model field with concentric circular flux surfaces.
R = Ry +rcosf = Ry(1 + ecosb).

(b) [7 points] At first-order in 4, it is convenient to write ql(ll) = aUB. Show
that o) obeys the magnetic differential equation

B- Vo =¢q,-VIn B2 (6)

Solve that equation and show that

o = -2 (9) (%) T+ O), ()

where C is an undetermined constant of integration.

(Problem continues on next page.)
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Question I-5, continued

(c) [7 points] Show that

5 rq\ [ ncT 1 1
O3\ (= \7r{=_- —_
“ 2 (e) < e )T <32 (32))' (8)
(d) [7 points] Show that the radial component of the flux is

2
7 q{) = “Z,

I\’ (?\ 1 /1 1

=N (L) (= - =1 9
4 ( e) <€2) K (32 (B2)> ©)
(e) [5 points] What remains is to average the radial heat flux over a flux

surface. Show that
B2 (B2) © B}

Although you don’t need to do it, when one puts it all together one finds
that

(¢") = —nr, T'(1 + 1.6¢%). (11)
Possibly useful information:

o Given three generalized coordinates 2* (i = 1,2, 3), the volume element
is
dx = dz' dz* d2° J, (12)

which defines the Jacobian J: J = |8(z)/d(2))].

e If 9 is a flux-surface label, the flux-surface average of some scalar func-
tion F(1,0,¢) is
I fFrdodpJ F

(FY(®) = = : (13)
o Jo d0dpJ
o The flux-surface average of a divergence is
10
CAY = — (VI AY
(V- 4) = G (V(a%), (14)

where V' is the denominator of Eq. (13) and A* ¥ A4 . V2 are the
contravariant components of the vector A.

o The ratio of the parallel and perpendicular Braginskii resistivities is 0.51.




I.6: Applied Mathematics [30 points]

Consider the boundary-layer treatment of the differential equation
Py ady
— = —2zy=0 1

¢z T2 5 — 22y (1)

with the boundary conditions y(0) = y(1) = 1. Assume 0 < ¢ < 1.

(a) [5 points] Evaluate the width & of the layer in terms of «.

(b) [5 points] Find the outer-layer equation and the leading-order solution

ine.

(c) [5 points] Find the inner-layer equation. Working only to leading order
in €, examine (again only) the dominant asymptotic behavior of the solution
near the matching boundary (i.e., when the rescaled length X for the inner
layer is large and positive).

(d) [5 points] Show that the integral representation of the leading-order
inner-layer solution can be given by

e = [ e )
Cr

with the proper contour path Cy (k = 1,2,3) in the complex t domain, as
shown in Fig. 2.

arg(t)=2r/3

& ¥
arg{t)=2n/3

FIG. 2 Integration paths Cy (k = 1,2,3) in the complex ¢ domain. The angle of
each end point is indicated by arg(t).

(e) [5 points] Which path, or combination of them, gives the relevant solution
for the matching condition?

(f) [5 points] Find the leading-order inner-layer and uniform solutions by
using the integral representation.
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Answer all problems.

Today’s exam has been designed to require three hours of work
(180 points). However, you are allowed one extra hour, so the total
time allotted for today is four hours. The scores on the questions will
be weighted in proportion to their allotted time.

Start each numbered problem in a new test booklet. Put your name and
the question number on the title page of each booklet.

When you do not have time to put answers into forms that satisfy you,
indicate specifically how you would proceed if more time were avail-
able. If you do not attempt a particular problem, write on the booklet
“I have not attempted Problem __ ” and sign your name.

All work on this examination must be independent. No assistance from
other persons is permitted.

An NRL formulary is permitted. No other aids (books, calculators, etc.)
are allowed.
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IL.1: Experimental Methods [40 points|

In the absence of secondary electron emission, the condition that a probe
or other particle-collecting surface immersed in a plasma be at the floating
potential (i.e., conduct no current to ground) is satisfied when the electron
and ion currents are equal, or j; = je:

1/2 _ _ 1/2
e ke exp —e(Veo = Vi) _ 0.67, kT )
27Tme kT, m;

(a) [5 points] What modification to the above relationship is introduced if
the secondary-electron emission coefficient of the collecting surface is nonzero?

(b) [15 points] Describe the qualitative effect of a moderate secondary-
electron emission coefficient on the floating potential. Consider . = 0.5 as a
quantitative example, and solve for the modified floating potential.

(c) [10 points] For what secondary-electron emission coefficient would the
particle-collecting surface (or probe) float at approximately the space poten-
tial? If it develops that no material with such a secondary-electron emission
coefficient is available, can you think of another approach to probe construc-
tion which would allow a probe of some type to float at the space potential? Or
imagine a probe construction that would allow ;you to at least approximately
determine the space potential?

(d) [5 points] If the particle-collecting surface were a conducting limiter to
which a voltage bias could be applied, what effect would biasing the limiter at
the space potential have on the total power flowing to the limiter?

(e) [5 points] If the conducting limiter were replaced with an insulating
limiter (obviously not biased in this case), would there be an effect on the power
flow to the limiter? Can you say anything about the potential at the limiter
surface? Compare to an unbiased limiter, and to the situation in part (d)
above.




I1.2: MHD [15 points]

T

The Sun is the source of the solar wind, which permeates the heliosphere.
Assume -that the Sun is rotating about 'its axis with a constant angular
speed w;, and that the solar wind flows out purely radially with a constant
speed V.. In a spherical-polar coordinate system (r, 8, $) and assuming that
the magnetic field is initially purely radial and “frozen” into the plasma, show
that the magnetic field in the equatorial plane of the Sun is wound up by the
solar wind in the shape of a spiral (the so-called Archimedean spiral), given

by
¢ = (‘Z‘:’) r+ ¢0)

where ¢ is an azimuthal angle measured from the polar axis and ¢ is a constant
reference angle. Obtain an expression for B,/Bj in the equatorial plane.




I1.3: Irreversible Processes [45 points]

In Braginskii’s derivation of collisional transport equations and coefficients,
he works with the usual kinetic equation written in the particle coordinates
{z,v}. However, for cross-field effects it is often advantageous to use gyrocen-
ter coordinates instead. This problem addresses the calculation of cross-field
density diffusion using the latter approach.

(a) [5 points] The kinetic equation contains the velocity derivative 0/0v
evaluated with = held constant. Instead, consider the lowest-order gyrocenter
variables { X, V'}, where

X q__Gf r—p, (18‘)
V&, (1b)
and dof
p=bXvfw. (2)
Assume that B = BOE = const. Show that
%m—%”xa—x\WWx- 3)

Please be sure to adequately distinguish upper case from lower case, or use a
different notation like {X,V'} for the upper-case symbols.

(b) [5 points] Write the Landau operator in the above gyrocenter
variables (and call it C).

(c) [5 points] The distribution Fy(X,V,t) is the same object as the particle
distribution fs(x,v,t), but expressed in different variables. Show that F;
obeys

~

OF,
v

—————8FS(X’ V) —I—V“V||FV3+VE'Vﬁs+ (%) E'-g—s,i‘i‘wcsvxg'
s

ot

= _és[ﬁL (4)

where v & 0/0X and Vg © E x B/B By integrating this equa-
tion over V, find an evolution equation for the gyrocenter den-
sity N,(X,1).

(Problem continues on next page.)




Question II-3, continued

In a collisional regime, the lowest-order distribution is a local Maxwellian
fim,s(2,v,t) in the particle coordinates. This is annihilated by the collision
operator {no matter in which coordinates that operator is written). Assume
that the = dependence of that local Maxwellian is only through density, i.e.,
Sias(®,v,) = [ns(,¢) /75 fu,s(v), where fr(v) is an absolute Maxwellian.
One has fim,s(,v,t) = Fim,s(X, V,t). To repeat, it is true that Cs[fiM] =0.

However, consider the gyroaveraged distribution Fy(X,V/, t) &ef (Fy(X,V, 1)),
where the average is over gyrophase. This quantity is not annihilated by the

collision operator: Cy[F] # 0.
(d) [30 points] To lowest order in the gyroradius, one has

Fis(X,V, 1) = [Ny(X, 1) /7, fms(V). (5)

By using this form in C,[Fiy] and working out the V' integral (holding X
fixed) of 53[711\4], show that you can efficiently recover Braginskii’s
result for cross-field diffusion of small density perturbations in a
two-species plasma to lowest order in a gyroradius expansion. Assume
constant temperatures with T, = T; = T..

Important notes and hints:

e Most importantly, demonstrate that you understand which term(s) in
the collision operator gives rise to the diffusion coefficient, and that the
integral(s) you will have to do will lead to the proper parameter scaling.
Only after you have done that should you worry about minus signs and
the actual evaluation of any integrals.

e Do not attempt to do any sort of Chapman~Enskog solution of the kinetic
equation. As stated above, directly evaluate the contribution to the
gyrocenter density evolution equation of the collision operator acting on
the assumed local Maxwellian.




I1.4: General Phenomena [10 points]

(a) [5 points] White (visible) light incident on a piece of gold (density
19.3g/cc, 197 AMU) is reflected. Why? Be quantitative.

(b) [3 points] If the piece of gold is made thin enough, some light will leak
through. Why and how thin? Be quantitative.

(c) [2 points] Remarkably, the light that gets through is red-ish, not blue-ish.
Explain why this is remarkable and why it happens.
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I1.5: Waves and Instabilities [50 points]

A recent Physical Review Letters issue features an article! that describes the
following effect: in a cold, collisionless, one-dimensional electron plasma with
a warm beam, flattening of the beam distribution near the plasma, resonance
does not guarantee linear stability. Here yow are asked to rederive this result,
complement the original derivation, and explain the underlying basic physics.

(a) [5 points] First, consider plasma with a smooth low-density beam dis-
tribution Fy(v) without a plateau [Fig. 1(a)]. Express the dielectric function
&w, k) as a functional of Fp and derive approximate equations for w, = Rew
and w; = Imw o< F'(wr/k)).

Hint: Consider the following formula (you should know what it means) as
given:

W [ _I30)
__ __bps 0s J
Xe="%2 | 5wk ()

(b) [30 points] Consider a beam distribution F(v) with a horizontal plateau
of width 2Awv centered around some velocity v, [Fig. 1(b)]. The new dielectric
function is € = € + d¢, where d¢ is due to F(0) = F(v) — Fo(v). Sketch
§F(v), then sketch 6F'(v). Assuming that Av is small enough such that Fy is
negligible across the plateau, calculate e as a function of w = (w—kv.)/(kAv).
Then derive the dispersion relation for w. (For simplicity, assume k>0,
lw,| < 1, and w; # 0; here w, = Rew and w; = Imw.)

Hint: Use the Taylor expansion of € in w. The dispersion relation will have
the form

3

2w
€+ﬂ(M’LU‘*‘III(l—’lU)—-lH(l*i"lU)‘Fm)=0, (2)
where €, 8, and p are real and independent of w. [Note that the imaginary
unit, 4, does not enter Eq. (2) explicitly.] The branch cut of Inz is chosen as
in Fig. 2.

(c) [15 points] Explore and sketch the solutions of Eq. (2) in the particular
case € = 0:

1. Consider w < 1. Show that at p < 4 one has w, = Rew = kv, and

yet there is an instability. Why is this instability not suppressed despite
F'(w,/k) = 07

2. At p < 1, the imaginary roots grow large, w; = —wy > 1. Find w; o
in the limit w; 2 — +ico. Show that one of them, ws, is the standard

rate of the bump-on-tail instability, the same as that found in part (a).
Explain why this is anticipated.

(Problem continues on next page. )

1 M. K. Lilley and R. M. Nyqvist, Formation of Phase Space Holes and Clumps, Phys. Rev.
Lett. 112, 155002 (2014).
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Question I1-5, continued

0 ve~wplk ve—Au  Ue~wplk  y,—Ay

T - \ I I
& ® | Fo(l{)x[/ 5
> l | Pl =
LL" Ft----- ; - P | K
I =

0
] v

FIG. 1 (a) Distribution without a plateau: cold bulk, fo; warm beam, Fy. (b) Close-
up of the beam distribution with a plateau, F'. For reference, Fy is also shown
(dashed).

Imz Imz

(a): w;>0 1+w (b): w;<0

Rez

Rez

1-w 1+w

FIG. 2 Assumed branch cut (thick) for Inz on the complex z plane. For your
convenience, the points 1+ w and 1 — w are shown too, for w; > 0 (left) and w; < 0
(right). Also note the following:

Inz=In|z| +iargz,

In(1+€)=¢-€/2+6/3—--- (<1



I1.6: Computational Physics [20 points]

A colleague proposes to use the following algorithm to solve a system of
equations of the form dy/dt = F(y) (where y and F' could be vectors):

Yn+1 = Yn—1 + 2AtF(yn>a

where y, = y(t,) and t, = nAt. He has shown that because this algorithm
is centered in time, it ensures exact energy conservation when applied to the
problem of particles gyrating in a magnetic field (if the time step is sufficiently
small that it satisfies a Courant-type limit). He is correct in this. Now apply
the above equation to a simple one-dimensional problem that includes drag:

dy _

o —(v+1iQ)y. (1)

(v is a drag rate and 2 is a gyration frequency.) Show that this algorithm is
always unstable for any non-zero drag rate v, no matter how small the time
step is.

Hint: Show that there are two eigenmodes, and that one of them corresponds
to an instability. The other root is a second-order-accurate approximation to
the correct damped solution.




