DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAML.IN PLASMA PHYSICS

GENERAL EXAMINATION, PART 1
May 15, 2017

9:00 am. — 1:00 p.m.

e Answer all problems.

e Today’s exam has been designed to require three hours of work (180 points). However,
you are allowed one extra hour, so the total time allotted for today is four hours. The
scores on the questions will be weighted in proportion to their allotted time.

e Start each numbered problem in a new test booklet. Put your name and the question
number on the title page of each booklet.

e When you do not have time to put answers into forms that satisfy you, indicate specif-
tcally how you would proceed if more time were available. If you do not attempt a
particular problem, write on the booklet “I have not attempted Problem ___” and sign
your name.

e All work on this examination must be independent. No assistance from other persons
is permitted. )

¢ An NRL formulary is permitted. No other aids (books, calculators, etc.) are allowed.
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I.1: General Plasma Physics [40 points]

(a) [15 points] Consider a relatively cold plasma consisting of equal densities of electrons
and positrons. Beginning with the cold plasma fluid equations in one dimension, derive the
cold collisionless plasma dispersion relation w? = w?, where w, is the oscillation frequency
of the plasma oscillations. Explain all your approximations and limits of validity of your
results.

Hint: you may find it convenient to consider separately the difference density, n; — n., and
the sum density n; + n., where n; is the positron density and n. is the electron density.

(b) [15 points] Suppose the initial conditions for the electron-positron plasma are given
by: ne(z,t = 0) = ng + g(z); ni(z,t = 0) = ng; ve(z,t = 0) = 0; and v;(z,t = 0) = 0, where
g(z) is small compared to ng and has zero area (when integrated over z). The electron and
positron fluid velocities, given respectively by v.(z,t = 0) and v;(z, ¢t = 0), initially vanish
everywhere. Using these initial conditions, calculate the quantities: n.(z,t), ni(z,t), ve(z, t),
and v;(z, t).

(c) [5 points] For an electron-positron plasma with temperature 7', what condition on g(z)
insures that the cold plasma approximation is valid?

(d) [5 points] Suppose that a beam of electrons with velocity vy passes through a slab of
electron-positron plasma with initial conditions as given. What condition on g(z) insures
that the electron beam will exactly conserve its phase.space density as it traverses the plasma
slab?



I.2: General Plasma Physics [20 points]

Krook collision operator for one species is —~

<%) collision - [f - fM (v B (v>)] ,

(v) = [ fv)vd®v
T [ fw)dBv '’
fur (0 = (0)) = g exp | -,

where p is a constant frequency and m is the mass of the species. Show that for properly
chosen T" and n, the collision operator conserves number density, momentum, and energy.



I.3: Experimental Methods [40 points]

(a) [10 points] What magnetic diagnostics aré needed to determine the steady-state global
energy confinement time 7z for an Ohmically heated, circular-cross-section, large-aspect-

ratio tokamak plasma?

(b) [30 points] Write an expression for the energy confinement time 7z , using the quantities
measured with the diagnostic set you propose. Assume that the plasma £ is small, so that
any plasma-induced deviation from the vacuum magnetic field is small.



I.4: MHD [45 points]

In plasma equilibria, cross-field particle drifts usually produce local charge accumulation and
a corresponding electrostatic field. In the MHD equations, the effect of the cross-field drift
on charge accumulation comes in through 7, the component of the current perpendicular
to the magnetic field.

(a) [5 points] Using the MHD force balance equation, derive an expression for 5, in terms
of the pressure gradient and magnetic field.

We will look at the effect of 7, on charge accumulation and on the electric field in the context
of a relatively simple magnetic field,

B=1IVé+Vix Ve, (1)

where 9 = Byr?/2, I = I, — I;3, and where Iy, I; and By are constants. Work in an
orthogonal coordinate system (r, By, B,), where r is the minor radius,  is the conventional
geometric poloidal angle, and ¢ is the conventional geometric toroidal angle. R is the major
radius, with R = R, at the coordinate axis. Assume large aspect ratio, r/Ry < 1. With
this approximation, it will be convenient to write R = Ry + rcosf. Also assume that the
magnitude of the toroidal field produced by the plasma current is small relative to that
produced by the external magnetic field coils, |lp| > | 9|, and that the toroidal field is
large compared to the poloidal field, |Iy| > |rBs|. We will further assume that we are
given the pressure profile as p(v) and that p is sufficiently small that the modification of B
produced by the pressure driven current can be neglected.

Hint: You will save time and effort in the following calculations if, early in your calculation,
you discard terms in your erpressions that are a factor [rBy/Iy| or |I13/Io| smaller than
other terms. .

(b) [10 points] Evaluate the expression for j, that you obtained in pfoblem (a), above, to
first order in r/Ry and to lowest order in I1%/Iy and rBy/Iy, using the given field and the
pressure profile in the form given above. (You can use Vp = p/(¢)Vy.)

(c) [10 points] Calculate V - j, to lowest order in r/Ry, rBg/ly, and I139p/Iy. (There
is a subtlety here because of the fact that both angular coordinates have a finite radius
of curvature. The calculation can be done properly by taking advantage of the fact that
V- (VrxV8)=V-[Vx(rvd)] =0and V-(V¢x Vr)=0. If you don't see how to make
use of these identities, then just do the calculation as if you were working in a cylindrical
coordinate system with 2 = ¢ and proceed from there.)

The divergence of 7, produces a local charge accumulation, which in turn produces an
electrostatic field.

(d) [5 points] The MHD equations assume quasi-neutrality. Is it valid to use the (resistive)
MHD equations in this context, where there is a charge accumulation and an associated
electrostatic field? Why or why not?

- Problem continued on nezxt page -
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The electrostatic field produced by the charge accumulation drives a current along the field
lines, called the Pfirsch-Schliiter current. )

(e) [10 points] Using quasi-neutrality, solve for j; = jyB/B to lowest order in r/Ro, By /I
and Ilw/IO -

Hint: You may find the following identity useful: V - (jyB/B) = B - V(j;/B).

(f) [5 points] Using the resistive MHD equations, solve for the electrostatic field along the
magnetic field lines produced by the charge accumulation, assuming a uniform resistivity 7.



I.5: Neoclassical Transport [35 points]

In an axisymmetric toroidal plasma, the conservation of canonical angular momentum can
be used to estimate the banana excursion of trapped particles in the long-mean-free-path
banana regime. The conservation of canonical angular momentum, P, can be expressed in
terms of the poloidal flux function, %, as follows:

P: = mRv; + zw. (1)

(a) [10 points] Show that 0vy/0t = —v - V1 by assuming v, = vj.

(b) [10 points] Estimate the trapped-particle radial velocity by using Faraday’s Law to-
gether with the result from part (a).

(c) [5 points] Using B =V x A, now express P, in terms of By .

(d) [5 points] Expand around rg, the mean radius of a trapped-particle orbit, to express
result from part (c) in terms of the trapped-particle radial excursion: A =1 —7q.

(e) [5 points] Taking v, ~ vy ~ €!/? (with € = r/R,) and By ~ B, (poloidal B field), obtain
an estimate for A in terms of the gyroradius.



DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
May 16, 2017

9:00 a.m. — 1:00 p.m.

e Answer all problems.

¢ Today’s exam has been designed to require three hours of work (180 points). However,
you are allowed one extra hour, so the total time allotted for today is four hours. The
scores on the questions will be weighted in proportion to their allotted time.

e Start each numbered problem in a new test booklet. Put your name and the question
number on the title page of each booklet.

e When you do not have time to put answers into forms that satisfy you, indicate specif-
ically how you would proceed if more time were available. If you do not attempt a
particular problem, write on the booklet “I have not attempted Problem __ " and sign
your name.

e All work on this examination must be independent. No assistance from other persons
is permitted.

An NRL formulary is permitted. No other aids (books, calculators, etc.) are allowed.
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IL.1: Waves and Instabilities [50 points]

In this problem, you are asked to explore the effect of intense electromagnetic (EM) radiation
on Langmuir waves in nonmagnetized homogeneeus fluid plasma with immobile ions.

(a) [15 points] Suppose EM electric field E,,, = Re(Ece'), where w = —8,0, k = V0, and
E, are slow compared to 6. Assuming w is much larger than the plasma frequency w,, argue
that the electron density perturbation 72 in Langmuir waves can be described by

oin + w2t — 3V = —V . n/m. (1)

Here, wpo is the unperturbed plasma frequency, vr is the thermal speed, n = —nV® is
the ponderomotive force density (assume that 7 is of order ), ® = €2|E,|2/(4mw?) is the
ponderomotive potential, e is the electron charge, and m is the electron mass.

Hint: As an option, you may derive the linear equation for n as if were no EM wave, then
ezplain why the EM wave enters simply as an effective force 1. To save time, consider the
expression for @ as given, but explain why that particular ezpression applies to this problem.

(b) [10 points] Assume that w satisfies the cold-plasma dispersion relation. Show that n
can be expressed through the EM-wave action density Z as follows:

n:-“’év(%). )

(c) [7 points] When vr is negligible, Eq. (1) becomes an equation of a driven oscillator.
Using this, estimate the EM-pulse length that maximizes the amplitude of the plasma wave
that the pulse excites by the ponderomotive force (the so-called plasma wake).

(d) [10 points] If plasma interacts with many randomly-phased EM waves (and parametric
effects are ignored), their ponderomotive forces add up. Then, Eq. (2) becomes

n(t,x) = —% V/g%:—))d%,. = (3)

where F' is the photon distribution. Assuming that photons can be modeled as classical
particles governed by ray equations, write the corresponding kinetic equation for ¥. Then
adopt F' = Fy(k) + F(t,x, k) and w = wo(k) + &(¢, x, k), where the tilded quantities are the
linear perturbations of order 7. Assuming 7 ox e~ *%+Kx ghow that

~  GK-ViFy, . wi @
Feer X0 =22 4
Q-K-v,’ w 2wy Mo (4)

where v, is the photon unperturbed group velocity. (The wave vector of a Langmuir wave,
K, must not be confused with the wave vectors of EM waves k.)

(e) [8 points] Using Egs. (1), (3), and (4), derive the Langmuir wave dispersion for a
given Fy. In general, is the frequency real or complex? Why?

-2~



I1.2: Experimental Methods [15 points]

Consider a thin-walled glass sphere, 10 cm in radius, containing a uniform 1 eV Ar™ plasma

of density 10'° — 10'? cm™®. One would like to measure its density with a microwave inter-
ferometer.

(a) [3 points] What frequency microwaves would be appropriate?

(b) [10 points] Sketch a simple homodyne Mach-Zehnder interferometer, naming at least
6 distinct components. (The same component can be used several times).

(c) [2 points] If the plasma were of chlorine instead argon, what complication might arise?



I1.3: Applied Math [45 points]

Consider a model equation that describes a perturbed particle distribution function y(z)e®
with y(d00) = 0, in an extended pitch—ar%gle)variable z:

Coly] +izy +1=0, (1)
where the bounce-averaged pitch-angle collisional operator is given by

Gyl = vt (woh(x)%) @)

in the modeled geometry. You will be asked to study this model equation analytically and
evaluate a quantity related to the torque 7 in the low collisionality limit:

T = lim /_oo Jy(z)dz, (3)

v—0

where J is just a constant related to the variation in the action. The following formulas (or
definitions) may be helpful for analysis.

.1 a
o) = }zl—I»I(l) 722 + a?
a

§(z) = lim L etdt

a—oo 27 J_,
2 2 5z* 6128
sech(m)5m=1—%+%.—772-+--- ([gv]<gforseries>

(a) [5 points] First try the Krook operator Ci[y] = —vy instead, and obtain 7.

(b) [5 points] Now with the pitch-angle operator C,[y], take v as a small parameter and use
the boundary-layer theory to proceed with your analytic evaluation. Where is the boundary
layer? Give the outer-layer equation and solution.

(c) [5 points] Look into only the homogeneous part of the equation. Use a Kruskal-Newton
diagram to find the dominant balance for the inner layer, and the width of the layer.

(d) [7 points] It is however necessary to include the inhomogeneous part for the inner-
layer equation to match the outer-layer solution. You may expect this from the Kruskal’s
philosophical principle of mazimal complezity for asymptotic analysis. By rescalingy —» Y
as well as z — X with the small parameter v, show that the inner-layer equation can be
cast as the inhomogeneous Airy equation:

a’y
o XY = 1. (4)

- Problem continued on next page -
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(e) [8 points] Using the Fourier-Laplace Kernel K(X,t) = eX*, show that a particular
solution for the layer equation can be given by

Y,(X) = A Xt /3y (5)

-

Y

Hint: Choose the end points of the integral path, in such a way to match the remainder of
integration by parts to the inhomogeneous term.

(f) [10 points] Find the path of steepest descent for the integral (5) on the complex ¢-plane,
for X — +00. Show that the dominant contribution comes from the integration near the end
point ¢ = 0, rather than a saddle point. Note that this is also true for X — —oco. Determine
the large X asymptotic behavior of the particular layer solution Y,(X) and see if it matches
the outer-layer solution in (b). Obtain a leading-order (in v) uniform approximation to y(x).

Hint: Here you don’t have to fiz the movable saddle points with another variable transforma-
tion. Just assume that X is a fixed parameter. Also use the approzimation I = fc e? XDt ~

V=2 [¢" (X, ,)e?Xt) to the integration through a saddle point t — ts, if it is needed.

(g) [5 points] Evaluate 7 using the uniform asymptotic approximation of y(z) and compare
your final answer with (a). This is a simplified example illustrating that the details of the
collision operator are not important in the plateau regimes (e.g. potato-plateau, superbanana-
plateau), as is well known in neoclassical transport theory, because the purpose of collisions
is just to remove the singularity in the kinematics.



IL.4: Irreversible Processes [50 points]

This problem has two parts, both of which must be completed for full credit. Part II is on
the next page; mathematical formulae of possible utility are given at the end of the problem.

Part I. Consider a mirror machine consisting of a long, straight, axisymmetric solenoid with
magnetic field By and with magnetic mirrors at both ends with peak field strength B, > By,
as shown in the figure below. An ion-electron plasma fills the mirror, with enough scale
separation between the Larmor, bounce, and collision frequencies to guarantee a magnetized,
gyrotropic plasma with distribution function f = f(v, €), where v is the particle speed and
§ = v /v is the cosine of the pitch angle.

B

(a) [5 points] Ignoring collisions and electric fields, derive a condition for particles to

be confined within such a device. Write your answer in terms of ¢ and the mirror ratio
Rm = Bl / Bo.

(b) [12 points] Now introduce particle collisions. Suppose that the mirroring particles
undergo pitch-angle scattering as described by the Lorentz collision operator
v(v) of _

Clfl =75 g (1= )5 =vLlf], (1

where
_ 3\/_7'? Vth 3 )
vv) = 2 (22) @)
Teoll N U

is the velocity-dependent collision frequency, 7o is the appropriate, collision timescale, and
v = (2T/m)Y/2 is the thermal speed. Under the watchful eye of an experimentalist, the
resulting pitch-angle diffusion and consequent loss of particles frém the device is perfectly
balanced by a source of plasma particles, such that equilibrium is maintained. Write down
an equation for this equilibrium, specify suitable boundary conditions, and solve for the
equilibrium distribution function feq(v,&). Take the particle source S to be mono-energetic
and independent of £ for £ satisfying the condition derived in (a).

(c) [13 points] Calculate the average confinement time 7, for particles introduced into the
mirror-trapped region. Then take the limits By, ~ 1 and Ry, >> 1 of 7. In which limit are
particles lost from the device faster? Explain your answer physically.

Hint: If you are unable to answer part (b), explain how you would calculate 7. if given
feq(v,€). Provide physical arguments for whether Ry ~ 1 or Ry > 1 leaks particles faster.

(d) [2 points] Ions and electrons generally have different collision frequencies, and so they
will try to collisionally leak from the device at different rates. An ambipolar electric field
will thus be set up to electrostatically confine whichever species would otherwise leak faster.
Briefly explain which species, ions or electrons, is confined primarily by this ambipolar
electric field. (Take the ion and electrons temperatures to be comparable.)

-6 —
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Part II. Now consider the Braginskii problem of collisional heat transport in a magnetized,
thermally stratified plasma, that is, one with p K Amp < L, where p denotes the particles’
_Larmor radii, Apg, is the collisional mean free path, and L is the gradient lengthscale. Take
the zeroth-order distribution functions of the ions and electrons to be 1sotropic Maxwellians
with non-uniform density n(r), zero mean flow, and equal non-uniform temperature T'(r):

n v? o 2T
fo(r,v) = T exp (_v—ﬁ)’ where wvg, = o (3)

The corresponding correction equation that determines the first-order (non-Maxwellian) dis-
tribution function f; in the Braginskii-Chapman-Enskog expansion is given by

Afi _ R v? 5
9554‘6[]“1]—’0'[“—?4-<;g—*2">VlHT:|f0, (4)

where {1 is the Larmor frequency, ¥ is the particle gyrophase, and R is the friction force.

(e) [18 points] Solve equation (4) to obtain the parallel heat flux q, directed along the

magnetic-field direction b = B /B. For simplicity, take the collision operator C to be the
Lorentz collision operator, v(v)L£, defined by equation (1). You may want to recall that the
collision frequency v(v) oc v (see equation 2) and that the Legendre polynomials Py(&) are
eigenfunctions of the operator £ with eigenvalues —£(¢ + 1) /2.

Hint: You do not need the full solution to equation (4) to calculate q), nor do you need the
precise definition of R (unless you’ve forgotten some constraints on fj. .. ).

(f) [5 points] In order for equation (3) to be self-consistent, something must balance the
implied pressure gradient to give hydrostatic equilibrium. For example, this might be accom-
plished by a fixed gravitational field. But as conduction relaxes the temperature gradient,
and hence the pressure gradient, the system will produce flows in response. That is, unless
the temperature has a particular profile. What is it? For sirr;fﬂicity, take the magnetic field
to be uniform and aligned with the temperature gradient.

Possibly useless information:

2 3 )
ln(1+x)'zz—%+%—... for |z] < 1
1
/dx In(1 - z%) = zIn(1 — z?) — 2:1:+1n(1 fi)
' 2
[—1 diL‘Pg(Z')Pgl(.'E) = mége/
1 1
P(z) =1, P(z)==z, Pzx)= —2-(3952 —1), PB(z)= 5(5:1:3 — 3z1)

/ drzz¥fe® =T(k+1) (= k! for integer k > 0)
0

o@)-ve 1)~k 1)k )= 1)
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I1.5: MHD [20 points]

In this problem, you will be asked about properties of an ideal, rotating MHD plasma whose

dynamics are described by -
8_‘7_+(V.V)V=_E_gng+(_vx_3)x_]3, (1)
ot p Hop
88—]1;3=VX(VXB), (2)

where Q is angular velocity and other symbols have their conventional meanings. You
can assume incompressibility and uniform density for simplicity and use the vector identity
V x(axb)=a(V-b)-b(V-a)+(b-V)a—(a- V)b, to answer the following questions.

(a) [10 points] In the limit of a rapid, uniform rotation €, without magnetic field, the
geostrophic balance can be maintained. Prove that such a steady flow, V¢, must be uniform
in the direction of €4 (Taylor-Proudman Theorem). What kind of waves can be supported
in such flows when perturbed?

(b) [10 points] When a uniform magnetic field, Bo, is imposed to the above flow along
29, show that a perturbed magnetic field B, can grow out of the variation along By of a

perturbed flow, A% (the w effect). In which direction does this growing magnetic field point?
How does magnetic field modify the waves?



