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DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART I
May 2, 2022

9:00 a.m. — 1:40 p.m.

Today’s exam (Part I) contains 6 problems on pages 2-9. Attempt all problems.

Today’s exam has been designed to require three hours of work (180 points).

However, you are allowed one extra hour for problem solving, 20 extra minutes
for “mask break”, and 20 extra minutes for uploading your answers, so the total
time allotted for today is 4 hours 40 minutes. The scores on the questions will

be weighted in proportion to their allotted time.

number on each page.

Start each numbered problem on a new page. Put your name and the question

When you do not have time to put answers into forms that satisfy you, indicate

specifically how you would proceed if more time were available. If you do
not attempt a particular problem, write on the booklet “I have not attempted

Problem ” and sign your name.

persons is permitted.

An NRL formulary is permitted. No other aids (books, calculators, etc.)
allowed.
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I.1: General Plasma Physics [50 points]

Consider electrons in a magnetic mirror machine with mirror ratio R and mirror axis
in the 2 direction. The electrons are sufficiently dilute that collisions are completely
ignorable. Similarly, any self-generated electric or magnetic fields within the plasma
are completely ignorable.

(a) [6 points] Derive the trapping condition in midplane (z = 0) energy coordinates,
W10 and W), respectively the perpendicular and parallel energies as the midplane is
crossed. Sketch in W o-W), space the region of trapped electrons.

(b) [6 points] Suppose that the magnetic field near the axis can be approximated as

) Bo(1+22/L%)2, if 2| <cL
T Bo(1+ )z, if |z| > cL,

where ¢ is a dimensionless constant, L is a constant with dimensions of length and
By is a constant with dimensions of magnetic field. Show that the turning points for
trapped electrons obey: 22./L? = W)o/Wo. Note that one can write R = 1 + c2.

(c) [8 points] Now suppose that By = By(t) is a very slowly varying function of time,
such that it is monotonically increasing in going from By(t = 0) = By; to Bo(t = t7) =
By, where Bys/By; = (. Calculate the changes in the perpendicular and parallel
midplane energies. Note: by slowly varying we mean slow enough that the parallel
particle motion can be considered to be adiabatic.

(d) [10 points] Suppose that a measure of being “more trapped” is that the change in
the ratio S = Wo/W)q is greater than zero. Show that all trapped electrons become
“more trapped” for 8 > 1. Sketch in W,o-W)o space showing how the region of initially
marginally trapped electrons (the trapped-passing boundary) becomes more trapped.

(e) [10 points] Suppose now that instead of By = By(t) being a very, very slowly
varying function of time, it changes on a time scale very fast compared to the bounce
time of trapped electrons but very slowly compared to a gyro-period, while increasing
in going from By(t = 0) = Bo; to By(t = ty) = Byy, where Bys/Bo; = . Suppose that
the sudden increase occurs for trapped electrons at position z. Define the local mirror
ratio R, = B(z)/B,. Show that the change the midplane coordinates is then:

AWyo = (6 — 1)Wogi, AW = (R, — 1) AW, (1)

where (Wi, Wie:) and (Wjos, Wioy) are the initial and final midplane energies, re-
spectively, and AW, o = Wio; — Wio; and AW)o = Wy — W) are the changes in the
energies.

(f) [10 points] Show that for this case all electrons are “no less trapped”, or, in other
words AS > 0. For which electrons is the equality realized? Hint:It may help to write
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this condition as:

_ WiAW,, [Wum

AS = —(R,—1)| >0.
WioiWios | Wi ( )]



I.2: MHD Short Problem [15 points]

Derive the Grad-Shafranov equation for a plasma in slab geometry with the magnetic
field independent of z where (z,y, z) are Cartesian coordinates. Which quantities are
functions only of ¥? Show this. What quantities need to be specified in order to solve
this equation?



I.3: Waves and Instabilities [45 points]

Consider waves in nonmagnetized electron plasma with average density ng and station-
ary ions. Suppose that the electron distribution f is governed by the collisional Vlasov
equation

7] 0 8

—f+v —f—l—— E+-= va f —v(f = fo), (1)
ot ox

where v = const, fo = fo(v) is a homogeneous equilibrium distribution with zero

average velocity, tildes denote wave fields, e < 0, and the remaining notation is as

usual.

(a) [4 points] Assume E = Re[£(t)e®t®)], where £ is a slow complex envelope and 6 is
a rapid real phase. Assume that the wave is linearly polarized, i.e., E(t) = n€(t), where
7 is a constant real unit vector and € is a scalar amplitude. Fmd the leading-order
approximation for B = Re[B(t)e??**)] from Faraday’s law and express £ = £ +vxB/c
through £. Show that the corresponding £.*&; is real for any a and b.

(b) [12 points] Adopt f = f(t,v) + f(t,x,v), where the bar denotes spatial average,
and assume f < f. Derive the linearized equation for f and solve it _assuming that
f is fixed, the wave is monochromatic, and the initial conditions for f are Zignorable.
(Although 1nadequate in general, this model will be sufficient.) Show that f satisfies

0 f of - el ENXEL
Bt By, (Dab év_b) v(f = fol, Day = 2m? (w—k - v)2 +v?’ @)

where w is the wave real frequency and k is the real wavevector. Hint: Notice that
Oy - €' = 0 and use the result from (a).

(c) [12 points] Show that in the cold plasma limit k - v < w and for sufficiently rare
collisions v <« w, Eq. (2) leads to the following equation for the plasma momentum
density P:

oP

_nF-vP, F=% (3)
at 0 ’ "~ 2muw’

The vector F' can be understood as the wave-driven force per particle. Often (for
example, in atomic physics), it is loosely called light pressure or radiation pressure.

(d) [13 points] Assume that the wave is transverse, so in the cold limit it is governed
by the dielectric function ¢ = 1 — wf, /[we{we + iv)]. Using the appropriate dispersion
relation, find the wave complex frequency w, = w + iy to the first order in v. Also
calculate the wave action density Z and the corresponding wave momentum P,,. Using
these results and the geometrical-optics equation for Py, show that 8, P, = —ngF.

(e) [4 points] Show that, in the limits used in (c), the transverse-wave momentum
entirely consists of the electromagnetic-field momentum. Based on the result from (b),
qualitatively explain how the wave momentum is absorbed.
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I.4: Irreversible Processes Short Problem [10 points]

Show that the Balescu-Lenard operator that describes same-species, singly-charged-
particle collisions,

C =

d de ., wkk ( 4re?

2
o ) @ kv, PP kz)‘s(k'”"“'”')

- (—agif’) /@) - f() —8’;’,")) ,

conserves the kinetic-energy density of these species in a homogeneous plasma. Here,
f(p) is the momentum distribution, v = p/m, v' = p’/m, and the remaining notation
is as usual.



1.5: Applied Math Short Problem [15 points]

(a) [3 points] Consider the transcendental equation:
z=¢e" —a (1)

where o and z are real. Show that for & > 1 solutions exist? In this case how many
solutions exist?

(b) [5 points] Consider the iteration
Tnp1 =€ —a.

for a > 1. Give criteria on z for the iteration to converge. Which solution of Eq. (1)
does the iteration converge to?

(c) [7 points] Construct iteration.schemes to find the other real roots of Eq. (1).
Outline the constraints on z, for convergence of your scheme. Is your convergence
linear or quadratic?



I.6: Experimental Methods [45 points]

The current-voltage characteristic (the I-V curve) shown on the next page was obtained
from a single-tipped Langmuir probe in an unmagnetized laboratory plasma.

(a) [5 points] Identify the ion saturation, electron saturation, and transition regions
in the probe curve.

(b) [5 points] Which bias conditions define these regions?

(c) [5 points] Indicate the approximate values for the floating potential and space
potential (on the curve itself, and numerically).

(d) [5 points] If the ion species is hydrogen, use the results of (c) to estimate the
electron temperature.

(e) [7 points] In addition, use the appropriate region of the probe trace to provide
an alternative estimate of the electron temperature.

(f) [8 points] If the probe tip (the conductor immersed in the plasma) is 1 mm in
diameter and 5 mm long, what is the approximate value of the plasma density? (again,
assume hydrogen for the ionic species) Assume T, >> T;. Are sheath expansion effects
likely to affect the accuracy of the density estimate? Explain.

(g) [5 points] Discuss any possible changes to the values you obtained in parts (c),
(d), {e), and (f) which might result if the plasma is strongly magnetized.
4

(h) [5 points] Other than density, can any information regarding the ion population
be obtained from the probe I-V curve?
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FIG. 1 Langmuir probe characteristics.



DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART II
May 3, 2022

9:00 a.m. — 1:40 p.m.

Today’s exam (Part II) contains 6 problems on pages 2-7. Answer all problems.

Today’s exam has been designed to require three hours of work (180 points).
However, you are allowed one extra hour for problem solving, 20 extra minutes
for “mask break”, and 20 extra minutes for uploading your answers, so the total
time allotted for today is 4 hours 40 minutes. The scores on the questions will
be weighted in proportion to their allotted time.

Start each numbered problem on a new page. Put your name and the question
number on each page.

When you do not have time to put answers into forms that satisfy you, indicate
specifically how you would proceed if more time were available. If you do
not attempt a particular problem, write on the booklet “I have not attempted
Problem ___” and sign your name.

All work on this examination must be independent. No assistance from other
persons is permitted.

An NRL formulary is permitted. No other aids (books, calculators, etc.) are

allowed.
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I1.1: General Plasma Physics [25 points]

Consider a point particle whose phase space dynamics is determined by the canonical
Hamilton’s equation and a given Hamiltonian function H(q,p,t), i.e.,

. BH

b= @)

Here, (g, p) is the phase space coordinate. Liouville’s theorem states that the dynamics
of the particle conserves the phase space volume.

(a) [5 points] Equations (1) and (2) describe the dynamics of point (particle) in phase
space. What is meant by phase space volume conservation in Liouville's theorem?

(b) [10 points] Consider a charged particle in an external electromagnetic field. Let
(z,p = mx) be the phase space coordinate for the particle, and the electromagnetic
field is specified by the 4-potential (¢(x,t), A(zx,t)). The canonical Hamilton’s equa-
tion of the charged particle is expressed in terms of (z, P), where P = p + qA/c is
known as the canonical momentum. The Hamiltonian function is

(P —qA/c)
H(x P,t) = ——"—— .
( ) 5 T a9
According to Liouville’s theorem, the phase space volume measured in terms of (z, P)
is conserved. But it turns out that the phase volume measured in terms of (, p) is also
conserved. Prove this fact, i.e., the dynamics of the charged particle in the external
electromagnetic field conserves the phase space volume measure in terms of (z, p).

(c) [10 points] For the charged particle considered above, we now conclude that the
phase space volumes measured in terms of both (x, p) and (x, P) are conserved. There
has been a debate in accelerator physics community on which volume should be the
correct volume when discussing the physics of phase space volume conservation. But
the fact is that these two volumes are identical. Prove this fact.



I1.2: Waves Short Problem [15 points]

Starting from Maxwell’s equations, derive the dispersion relation for the X wave prop-
agating perpendicular to the magnetic field in cold plasma. Identify the equations that
determine cutoffs and resonances in terms of R, L, S = (R+L)/2, D = (R—L)/2, and
P that enter the expression for the dielectric tensor €, which you may take for granted:

S —-iD 0
e=|(iD S 0 |. (1)
0 0 P

What is the wave polarization near the corresponding resonances?



I1.3: MHD [30 points]

Consider an equilibrium sheared magnetic field

z

B=btanh(L

)9+ Boz, (1)
where b, L, and By are constants, and other symbols have their usual meanings. Assume
that all plasma motion is confined to the z — y plane, and that z remains an ignorable
coordinate at all times.

(a) [5 points] Representing the magnetic field in the form B = 2 x V¥(z,y) + BoZ,
obtain an expression for the flux function ¥o(z,y) and current density.

(b) [10 points] Assume that the equilibrium magnetic flux is perturbed by a fluctua-
tion ¥;(z,y,t). From the resistive MHD Ohm’s law, obtain a time-evolution equation
for ¥ (z,y,t) in terms of the single-fluid velocity v and the Lundquist number of the
plasma. Identify the nonlinear terms in the time-evolution equation.

(c) [10 points] Assume a perturbation of the form ¥i(z,y,t) = ¥;(t) cos ky, where
k is a constant wavenumber. Derive the relation between the island width W (t) and
U, (t), assuming that the islands obey the “constant-¥” approximation. What happens
to the island width in the ideal MHD limit? Why?

(d) [5 points] Explain qualitatively the time-dependence of W (t), linearly and non-
linearly for “constant-U” islands.



I1.4: Irreversible Processes [55 points]

(a) [10 points] For a low-density trace species  colliding with a Maxwellian species
B, show that the angle-averaged collision operator can be written as

Cuslfe) = 5 [es) (vt 5 )| 0

where the coefficient ¢, is independent of velocity. (Your starting point can be a result
in the NRL formulary.)

(b) [5 points] Solve Cyp(fa) = 0 for f,. Give a physical interpretation for the value
of c;. (One or two sentences is enough.)

(c) [10 points] Derive a simple expression for ¢;(v) for particles with v < v;5, where
v; is the thermal velocity for species 3.

(d) [10 points] A simple flux-surface-averaged and pitch-angle averaged quasilinear
operator @ describing the effects of second harmonic heating of a species o by ion
cyclotron waves is:

0 Ofa
Qfa) = 1)1—255 ('U4Vrf8—];) )

where v is independent of velocity. Calculate the heating power density Py in terms
of s and the density and average energy of species . Use this to express v;s in terms
of P and other parameters.

(e) [15 points] Find an analytic solution for the steady-state distribution function
fa(v) at high velocity where the RF velocity diffusion is balanced only by drag on
electrons (but assume the velocity is still small compared to the electron thermal ve-
locity). (Hint: unlike the case of a source from beam injection, in this case the net flux
of particles in velocity space in steady state is 0.)



I1.5: Experimental Short Problem [15 points]

Consider that a solid material has been heated to a quasi-warm-dense-matter regime
where the electron density n, ~ 10¥m~2 and temperature T' ~ 30 eV. (This tempera-
ture is chosen to be slightly above warm-dense conditions, i.e. T' > Fermi temperature
so that no quantum degeneracy effects need to be considered.) The probe photons
have an energy E, = 5 keV. A Thomson scattering geometry is defined with a large
scattering angle of 150 degrees (near back-scattering, see Figure below). For all the
following questions, show a formula and a numerical estimate (i.e. in physical units)
for full credit.

(a) [5 points] Calculate the numerical magnitude of the Thomson scattering vec-
tor |k|, given probing photons with incident wavenumber k; at 5 keV and scattered
wavenumber k,, considering |k;| = |ks|.

(b) [5 points] Show that this scattering vector will probe the non-collective regime.

(c) [5 points] Calculate the characteristic Doppler broadening of the scattered light
(in units of eV).

plasma

scattering
volume

E, ~ 5 keV

k; probe ks to collection

FIG. 1 Experimental setup for Thomson scattering measurement.



I1.6: Applied Math [40 points]

The so-called plasma dispersion function appears very often in problems involving
small-amplitude waves propagating through warm plasmas. Its integral representation
is given by

oo —t2
20— [Tz (m()>0) )
=2ie~¢ / ¢ et dt, (2)
—; > i(t—t2/4d’ 3
1/0 e t (3

where Egs. (2-3) analytically continue Eq. (1) for Im(¢) < 0 using the entire error
Sfunctionwith complex arguments. Note also that, by integrating by parts, the plasma
dispersion function can be shown to be a solution to the differential equation

dz

 TuZ=-2 ’ (4)

This function is known to have the asymptotic expansion for large ¢

1 1 3 15
; =¢* _ - _ - 222,
Here, o0 = 0 for Im(¢) > 0, o = 1 for Im(¢) = 0, and ¢ = 2 for Im(¢) < 0. Prove
this result following the suggested steps, or otherwise. You may need the relations
T(z + 1) = z[(z), T(1/2) = /7, T'(2z) = 2*2"'0(z)T(z + 1/2)//7, where I'(z) =
Jo” t=" e =dt (for Re(t) > 0).

(a) [6 points] Consider the integral in Eq. (3). Is there a saddle point through
which you can potentially develop a steepest descent path? Obtain the leading order
contribution to the integral from the neighborhood of the saddle point.

(b) [10 points] Determine the steepest descent path needed to evaluate Eq. (3) for
large |¢| including the path through the saddle point. Explain the changes in ¢ (known
as the Stokes phenomenon) using the changes in the path. Does this discontinuity in
the asymptotic expressions make sense?

(c) [8 points] Evaluate the integral in Eq. (3) for large |(| using the steepest descent
method to prove that the first two terms in the asymptotic expansion in Eq. (5) are
correct (i.e. only up to —1/¢ term).

Zd) *[10 points] Obtain the full asymptotic expansion of Z(¢). You can use Eq. (3),
or y6u can switch to Egs. (2) or (4) if convenient.

(e) [6 points] The series becomes divergent as typically expected for an asymptotic
expansion. Give the optimal truncation number depending on the size |{].
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