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DEPARTMENT OF ASTROPHYSICAL SCIENCES,
PROGRAM IN PLASMA PHYSICS

GENERAL EXAMINATION, PART 1
May 8, 2023

9:00 a.m. — 1:00 p.m.

Today’s exam (Part I) contains 6 problems on pages 2-8. Attempt all problems.

Today’s exam has been designed to require three hours of work {180 points).
However, you are allowed one extra hour, so the total time allotted for today is
four hours. The scores on the questions will be weighted in proportion to their

allotted time.

Start each numbered problem in a new test booklet. Put your name and
question number on the title page of each booklet.

the

When you do not have time to put answers into forms that satisfy you, indicate
as specifically as you can how you would proceed if more time were available.
If you do not attempt a particular problem, write on the booklet “I have not

n

attempted Problem " and sign your name.

All work on this examination must be independent. No assistance from other

persons is permitted.

An NRL formulary is permitted. No other aids (books, calculators, etc.)
allowed.
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I.1 General Plasma Physics [45 points]

(a) [6 pts] Suppose a magnetic mirror with mirror axis in the £ direction, with midplane
z = 0 and the ends of the mirror are at z = z; and z = —z;. The midplane magnetic
field B(z = 0) = By is the minimum magnetic field and {for this part) the largest
magnetic field is at the endpoints, i.e. B{z = &2)) = 3] = By, Derive the trapping
condition in terms of the mirror ratio R = B1/Bp and the perpendicular and parallel
energies of electrons as the midplane z = 0 is crossed, namely Wi and Wo.

(b) [3 pts] Sketch the trapping condition in the W,o-Wyo plane.

Now suppose a very different kind of magnetic trap for electrons, but now the largest
magnetic field is the midplane magnetic fleld B(z = () = By. while the smallest magnetic
field is at the endpoints z = @ and z == —a. (The 2, parameter doesn’t appear for this part
of the problem.) To provide electron confinement, the magnetic trap is held at positive
poteniial. The magnetic field near the axis can be put as

B— {Bo(l —2%/0%)3, if 2% <a?
Bo(l —a?/L?)3, if 2% > a?,
where a?/L? < 1, and that the electric potential near the axis can be approximated as
_ J (1 —2%/a?), i z* <a?
¢_{D, if 22 > a2,

Electrons are considered trapped if they are confined to 2% < a?.

(c) [8 pts] Show that the parallel energy of trapped electrons can be put in the form

I’V Z) = I/VIFJ[S} - Zv( )

Express the turning points zp m terms of Wip, W0, ¢o, a and L.

(d) [4 pts] Sketch the trapping condition in the W o-W) plane.

(e) [5 pts] Suppose that if electrons pitch angle scatter (no energy change), they can be
lost through the trapped-passing boundary. In your sketch of the trapping condition,
show the triangular region of electrons that can be lost through repeated pitch angle
scattering. Show that the area A of this region is:

- % (edo)” (L2 /a® —1).

Suppose now that the magnetic field is not constant, but instead changes very slowly

in time, eventually changing by a factor e. In other words, if By — aBy

(f) [3 pts] How does the perpendicular midplane energy W, change?

(g) 19 pts] How does the parallel midplane energy W), change?

(h) [7 pts] In terms of the initial (¢ = 0) Wig and W)y, write down the condition for
electrons that are initially trapped but then detrapped. Are there any such electrons
for e« > 17 Are there any such electrons for o < 17

Hint: You may wish to use the integral

b
f (s — a)(b— 5)]*2ds = Z(6~ )"



1.2 Waves and Instabilities: Ton Acoustic Instability [40 points]

In this problem, you are asked to explore electrostatic oscillations in three-dimensional homoge-
neous collisionless electron-ion plasma. The usual notation will be assumed.

(a) [10 points] Show that such oscillations satisfy the following dispersion relation:

0= / k‘kavfs_o v) dv = e(w, k). (n

Ignore the subtleties associated with the resonant denominator, but do explain how the
integral in (1) is interpreted in the rigorous theory.

Hint: There is no need to introduce the plasma conductivity and general dispersion theory
here. Use the minimum set of equations that you actually need in this specific problem.

{b) [10 points] Assume that ions are cold and electrons are Maxwellian. Allow for a small
average electron velocity V' (needed in part (¢)), but ignore the contribution of resonant
particles in this part of the problem. By taking the appropriate limit of (1), show that

2

Gy 1
e(w, k) ~ e(w, k) = 128

>+ v (2}

where Ape is the electron Debye length. Derive the corresponding dispersion relation of ion
acoustic waves.

{¢) [17 points] Assume that V is of the order of the ion sound speed. Using your results from
part (b), show that the growth rate of jon acoustic waves is given by

o fmZme 'V —-w (3)
TTVE (1+ k223,)3/2

(d) [3 points] Find the angles between k and V at which ion acoustic waves are unstable at
kApe < 1. Qualitatively, what stabilizes these waves at large k?




1.3 Experimental Methods: Langmuir probe (30)

1. An idealized single Langmuir-probe characteristic is shown below (figure 1) for a cool
plasma composed of singly charged ions and electrons. The probe is a | cm? paddle. No
magnetic field is present.

a) Indicate (on the characteristic) the floating and space potentials. What are their
values? (3)

b) Indicate the ion and electron saturation currents. (3)

¢) What is the (dominant) species of ions found in this plasma? Explain how you
arrived at that conclusion. (4)

d) Make an estimate of the electron temperature and explain your reasoning. (4)

e) Make an estimate of the electron density and explain your reasoning. (4)

Probe current
04 mA
-20 -10 [¢] 10 20
001 oA Voltage applied to probe )
Figure 1

2. The characteristic of a spherical Langmuir probe of radius 0.1 cm is shown below (Figure
2) for a plasma with density and temperature similar to that in Part 1 (above): (12)
a) Give at least two explanations for the differences in shape from the idealized probe
characteristic (above) for region A and one reason for region B. Explain your
reasons.

Prabe curient

Vohtage applied to probe

Figure 2



I.4: General Plasma Physics:
Weyl particles in magnetized plasmas [35 pts]

Consider the cold plasma waves in a uniform and stationary magnetized plasma. The ions are
motionless and the magnetic field is constant, i.e., By = Bge, (Bo > 0). The linearized fuid
equations governing the wave dynamics are

v = —eE/me — {lv X e, ' (1)
O E =cV x B+ 4dwengv, (23
8;B = —cV % E, (3)

where v, B, B are perturbed velocity, perturbed electric field, and perturbed magnetic field, e > 0
and me are the electron charge and mass, ¢ is light speed, O = eBy/mec is the cyclotron frequency,
and n, > 0 is the unperturbed electron density. Consider eigenmodes of system in the form of

(v, E,B) ~ (4, B, B) exp(ik - & — iwt), (4)

where (#, B, B) are complex vectors and & is the real wavenumber vector. The linear system is 9
dimensional, and thus admits 9 eigenmodes mathematically. It turns out all 9 eigen-frequencies are
real. For a given k, let’s order the eigen-frequencies according to their values as

wﬂ(k):ﬂ'e {_45”33 '""2: _1:071:2>374}: (5)

where wm (k) < wn(k) if m < n. It can be shown that wy(k) = 0, but it will be ignored because it
is unphysical. (That eigenmode would be removed if the condition V- B = 0 was included.)

1. [10 points| Prove that the system is stable and undamped, i.e, all eigen-frequencies are indeed
real as stated above. [Hint: Show that by normalizing v, using a proper combination of n, and
Mg, to the same dimension as the electric field, the governing equations for the eigenmodes
can be written as H|y) = w(y), where [0} = (9, £, B)T and H is Hermitian. In the Gaussian
units, B and E have the same dimension.]

2. [8 points] Prove that for a given k the spectrum is symmetric with respect to the origin on
the real axis, Le., if w is an eigen-frequency, so is —w. [Hint: (¢, B, B) are complex vectors.]

3. {7 points] Name the four eigenmodes w,(k),n € {1,2,3,4} when the waves propagate parallel
to By, Le., k = kje,. Typical dispersion relations for these fours eigenmodes are shown in
Fig. 1 on the next page. [Hint: You learned all four modes in detail in AST551-GPPL]

4. [10 points] For these four modes wy(k),n € {1,2,3,4} when k = kjez, show that there
exist at least one and at most two wave-wave resonances among them in the open interval
of 0 < & < oo, A wave-wave resonance means that two waves have the same frequency and
wavenumber. What is the condition for the existence of two wave-wave resonances as shown
in Fig. 17
(Weyl particles are mass-less particles predicted theoretically in 1929. Excitations analogous
to Weyl particles, known as Weyl quasi-particles, were discovered 85 years later in concensed
matter. Plasma waves near the resonances can be viewed as Weyl quasi-particles in plasmas.]
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Figure 1: Dispersion relations of the four eigenmodes. The system parameter is wp /St =0.5.




L5 MHD Short Problem [15 points]

In the adiabatic toroidal compression (ATC) tokamak in Princeton, the vertical field was used to
shift the plasma inward in major radius. The major radius after the shift was about half that
before. The plasma beta was low. The average toroidal magnetic field in the plasma after the
shift was about twice that before the shift.

a. Why would you expect this magnitude of increase in the toroidal field? {3 pts)

In the following questions, assume that the plasma is ideal (zero resistivity). To simplify
things, use a large aspect ratio (cylindrical) approximation for the plasma in answering the
questions. (Note that the length of the cylinder representing the shified plasma is half that of
the cylinder representing the unshifted plasma.) You can also take the shape of the plasma
cross-section to be circular.

b. Suppose that the density profile of the unshifted plasma was n=n,(1-#*/a*), where n, is
the density at the center of the plasma, ris a radial coordinate that measures the distance
from the center of the plasma, and gis the minor radius of the plasma. What was the final
density profile after the radial shift? You may assume that the plasma cross-field diffusion
was small enough to be neglected in this calculation. (6 pts)

c. Suppose that the toroidal current density profile in the unshifted plasma was
J, = j,(1-r*/a"). What was the toroidal current density profile after the radial shift? (6 pts)



1.6 General: Particle Orbits [15 points]

Consider particle motion in a magnetic field B = 2By (and By > 0). {The sketches below
do not need to be precise, but they should illustrate some main gualitative properties.]

(a) [5 points] Sketch the magnetic field in the (z,y) plane. Sketch the orbit of an ion
that starts at y = yo, far enough above the midplane (y = 0) that a guiding center drift
approximation holds. Sketch the orbits, for the same length of time, of ions that starts at
—1yo and at Zyq.

(b) [5 points] Sketch the orbit of an ion that starts at the midplane with a velocity in the
y direction.

(c) [5 points] Sketch the orbits of 3 other ions starting at the midplane, but with a range
of possible initial velocity angles to illustrate how the orbit properties depend on the initial
angle.
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I1.1 MHD Long Problem (total 40 points)

In this problem, you will be asked to derive the stability condition for ideal MHD interchange
instability in magnetically confined plasmas and to apply it to plasmas confined by a current-
carrying wire.

Consider two neighboring, narrow magnetic flux tubes (see Figure (1) below): flux tube 1 and
flux tube 2, with same magnetic flux & = ®; = ®, but different cross-sectional areas S; and Sa,
different volume V| and V5, and different plasma pressure p; and ps, respectively. Therefore, their
magnetic field strengths By = ®/5; and By = ®/5; are different.

Pressure p,, Volume V,
Cross-section S,
Magnetic flux @

Pressure p Volume V,
Cross-section 5,
Magnetic flux @

Figure 1: Two flux tubes before interchanging

We consider interchanging the positions of the two flux tubes — 4.e. moving the plasma in tube 1
into the volume occupied by tube 2 and vice versa. Since we use ideal MHD, the magnetic flux in
each tube is preserved during the interchange motions. Heat flow is also neglected so that during
the motion the ideal gas law pV? = constant holds in each tube. The plasma internal energy in a
tube is given by pV/(y — 1).

1. [5 points] Show that total magnetic energy of the two flux tubes does not change after the
interchange.

2. [15 points] For py = p; +dp and V5 = V1 + 8V with dp/p1 ~ O(e) < 1 and §V/V) ~ Ofe) < 1,
show that the change in the total plasma internal energy (6W,) of the two flux tubes after
the interchange is to O(e?) given by

: 2
Wy = p1 m‘” 5 fy(%?w} = p16V5 [in (pV)]. )

Justify that interchange motion is stable if:

W, > 0. (2)



3. Consider the interchange stability condition of Eq. (2) in plasmas confined by an infinitely
long, current-carrying wire of current [ in the z direction and radius 7g. You may assume
that the current carried by the plasma is negligible (this is true if the plasma 3 is small).

(a) [5 points] Consider a narrow flux tube at radius r > rp with flux . Derive an expression
for the volume V' occupied by a narrow flux tube in terms of ®, » and I.

(b) [15 points| Assume that the plasma pressure is p(r) = ppr~®. Now consider (see Figure
(1)) interchanging adjacent flux tubes with radial separation 7o = r{ + £ with £ < 7.
Show that §p ~ —a(€/r1)p, and 6V ~ 2(&/r1)Vy. What is the range of o in which the
plasma is stable to the interchange instability? What is the profile for plasma 87



I1.2 Irreversible Processes [45 pts]

Consider the following 1D-1V linearized Vlasov equation governing the evolution of the dis-
tribution function f(¢,z,v) = fo(v) + 8 f(t,v) exp(ikz), where fo = nexp(—v?/v3)//T is a
stationary, homogeneous, Maxwellian background and df; is a small-amplitude perturbation
of wavenumber % excited by the source term that appears on the right-hand side:

o 4Pk
(at +1kv)6f,g +ikv T fo= @ ak(t)f{) (1)

The notatmn is standard: n is the number density, ¢ is the charge, 7' is the temperature, and
vy, = {27'/m)*/? is the thermal speed for particles of mass m. The electrostatic potential ¢y,

satisfies
2 f dv 6 i, (2)

where o is a constant. The acceleration a,(t) drives velocity fluctuations stochastically at
wavenumber k; it is described statistically by its two-time correlation function,

(ap(t)ar(t)) = evd 6(t — ) with (ax(t)) =0, (3)
where ¢ is a constant. Answer the following.

(a) [14 points] Show that the steady-state Auctuation level satisfies

<‘q<,akt)‘> Ikzle / 72 "

Da(C)
where ¢ = w/|k|vg, Z(¢) is the plasma dispersion function, and

(4)

Da(Q) = 5 +1+¢2(Q) = = - 22(0)

is the dielectric function. .

(b) [7 points] Solve D,(¢) = 0 in the limit o 3> 1 to find the approximate dispersion
relation for a rapidly oscillating, weakly damped mode:

Re(g) /3, Tm(0) = L7 (5) e (-2). 5)

(c) [10 points] With « = k™ %(dne?n/T) = (kApe) 2, equation (5) describes long-wavelength
(kApe < 1) Langmuir oscillations in an electron-ion plasma with unresponsive ions.
Substitute (5) into (4) and evaluate the integral to show that the electrostatic energy
associated with such Langmuir fluctuations satisfies

123 ~LE (6)
8mn 22y

4



(d) [7 points] For a stochastically driven, weakly damped, harmonic oscillator in thermal
equilibrium, £ = 2. Use this to interpret (6) physically in the context of the steady-
state electrostatic fluctuation level in a weakly coupled plasma in thermal equilibrium.
Namely, comment in detail on how such a steady state is achieved, what ax(¢) and
represent physically in this case, and why the electrostatic energy is equal to 7'/2 at
long wavelengths. Finally, how do you expect the steady-state spectrum to scale with
k at small wavelengths (kAp, > 1) where Langmuir fluctuations are strongly damped?

{e) [7 points] Provide two ways that you would modify a,(t), €, and/or o so that equations
(1)—(3) provided a more accurate model for how a real plasma generates and interacts
with a thermal bath of long-wavelength Langmuir fluctuations. Explain your answer.

Possibly useless information:

) 1 1 . . €
e =Y (m - a) Findle—a) Jlim o orra =i -a)
o © dw _, e dl .
£ _ iwt — T o aiwt — 7 alwi
s = [ a0 - [T e, sw= [ L
7(¢) = —}wmfm an 7 Z(¢) = “Wgwfm 0w gz 2z =0
B \/T_I' —oo €T - C, B '\/7? —o0 €T - C’ -

¢l Z(¢) ~iv/mexp(—¢?) —2((1—%(2—...)

Lo 0 Tm(¢) > IRe(q)"*
iCI>1: Z(¢) ~ivroexp(~(?) — 6(1 + 3 + ), o=<1 [Im(¢)] < [Re(¢)I™
2 Tn(¢) < —[RelQ)]



IL.3 Applied Math: Resonance and long time asymptotics [45 points]

This question explores the long time asymptotics of solutions of a wave equation with a delta function source:

o2 g, 8
= ws(255) ~wiy + F()3(s 1) (1)

Where the source f(t) = sinwt for £ > 0 and f(t) = 0 for t < 0. We consider solutions on the domain x > 0.
The initial conditions are: ’

y(t =0,z) = %{-(t=0,m) = (. _ (2)

You will need the standard Laplace transform relations:

o0 1 o +ioo
7(p, ) = A dytR)e™ and yto) =2t [ dpip,e)en 3)
F—100 .

where the real mumber ¢ is chosen such that #{p, =) is analytic for the real part of p greater than .

(1) [8 points] We start with an integral that helps you later on. Consider

1 a-+-{oo dp ot )
= —_— e 4
C(t) 2mi -/a—im ps/ze { )

with o defined as ahove, Sketch the contour in complex p space showing the non-analytic poles/brancheuts.
Find an explicit formula for dC/dt by differentiating this formula and evaluating the resulting integral.
Deduce C(t), given this and the initial condition C(Q) = 0.

(ii) [9 points] Show that f(p) = s7%o7; and that:

0 +4)0,0) = v (e EDE) 4 s - 1) )

(iit) {4 points] By infegrating across the delta function source show that

lim (%(p,l-l—e)—gg(%l‘"ﬁ)) = —f(p) (6)

£—+}

{iv) {9 points] Derive the solutions

1 o-+i0C w 2, 212
typ) = — d_%_'_.(p+w) b <<l
vy = g [ty et A e

1 atico w 2, 2y1/2
) —_ (R w®) vl -
vhe) = 1o /a—ico @ @ w22 et for i<z ()

(v) 113 points] Evaluate y(£, ) for t = co and z Anite.

(vi) (2 points] For what values of © does the asymptotic approximation in the previous part break down?



IL.4 Transport Theory Short Problem[20 pts]

A collisional, stratified plasma, is in hydrostatic equilibrium with a constant gravitational
fleld, such that VP = —mng%, where P is the thermal pressure, mn is the mass density,
and g > 0 is a constant. There is a temperature gradient, with hot plasma on the bottom
and cold plasma on the top. The plasma is threaded by a constant, uniform magnetic field
B, whose strength is large enough that the Larmor radii of all particles are much smaller
than the collisional mean free paths. Ignoring any possible instabilities, answer the following:

(a} [9 points] Suppose B = Bz, as in the figure below. Use physical arguments to esti-
mate the relevant conductive thermal diffusivity. Given such collisional transport, what
temperature profile should the atmosphere have to remain in hydrostatic equilibrium?

(b) [11 points] Suppose B = B, as in the figure below. Use physical arguments to esti-
mate the relevant conductive thermal diffusivity. Given such collisional transport, what
temperature profile should the atmosphere have to remain in hydrostatic equilibrium?

(a) cold (b) cold




II.2 Waves Short Problem:
Plasma heating on a density gradient [20 points]

Consider a cold nonmagnetized collisionless plasma with inhomogeneous background electron den-
sity ng. Assume that ions form a neutralizing background and remain stationary.

(a) [7 points] Show that the linear charge-density perturbation j satisfies

82’5 9. 62
“55"2-+pr:—;‘7“0']3, (L

where wp is the local plasma frequency, e and m are the electron charge and mass, respec-
tively, and FE is the electric field.

(b) [4 points] Assume ny = n.e”” with constant n, and L. Using (1), explain how a stationary
electromagnetic wave incident from vacuum (z — —oo) can heat such a plasma. For a
given wave frequency w, at what z can the heating occur? Also, what should be the wave
polarization for the heating to occur?

(c) [9 points] Assuming the wavevector k = (kg, ky, 0), qualitatively analyze how the amount
of power deposited depends on the angle of incidence 6 = arctan(ky/kz)|z-s—oco-

Hint: Consider the fact that the wave amplitude rapidly, yet not instantaneously, decreases
to zero beyond the geometrical-optics cutoff. Also consider the wave polarization.



IL.6 Experimental methods short problem [10 pts]

- For each, a few sentences should be sufficient. Formulas could help you but are not required.
No essays.

a. (5 pts) Describe one diagnostic for measuring plasma conditions in ITER (ne~ 102 m3,
Te~Ti~15keV). You can choose density or temperature. Describe the physics
principle of the measurement, and briefly what hardware is suitable as a detector.

b. (5 pts) Describe one diagnostic for measuring plasma conditions in a laser-heated high
energy density plasma, at near-to-above solid density conditions (ne ~ 10¥m3, Te ~ Tj ~
1 keV). You can choose density or temperature. Describe the physics principle of the
measurement, and the hardware that is needed as a detector.



