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1 Part a

Consider the sheared magnetic field in equilibrium

B = b tanh
( x

L

)
ŷ +B0ẑ (1)

We are asked to represent this field in the following form by obtaining the flux function Ψ0(x, y)

B = ẑ ×∇Ψ0(x, y) +B0ẑ (2)

Since there is no x̂ component of B, ∇Ψ0 is only in the x̂ direction and Ψ0(x, y) = Ψ0(x).

dΨ0

dx
= b tanh

( x

L

)
(3)

Ψ0 = bL log
(
cosh

( x

L

))
(4)

You can do the integration with a u-sub: tanh(x) = sinh(x)/ cosh(x), u = cosh(x), ∂xu = sinh(x)
The other task is to find J0 = 1

µ0
∇×B

J0 =
b

µ0L
sech2

( x

L

)
ẑ (5)

2 Part b

The resistive Ohm’s Law is
E+ v×B = ηJ (6)

Although it’s tempting to use the induction equation instead of Ohm’s Law, they explicitly ask to derive
from Ohm’s Law so this is our starting point. We can express E = −∂A/∂t−∇ϕ. We assume quasineutrality
in MHD so there are no electrostatic gradients and we can drop the second term: E = −∂A/∂t. Then the
goal is to express A1 in terms of Ψ1.

B1 = ∇×A1 = ẑ ×∇Ψ1(x, y) (7)

There may be a more efficient way to see this, but after writing out the components of these equations we
can see that A1 = Ψ1ẑ.

Therefore, we can sub this into Ohm’s Law in the ẑ direction.

−∂Ψ1

∂t
+ v0 ×B1 + v1 ×B0 + v1 ×B1 = ηJ1 (8)

Here, we’ve taken the 0th order solution to cancel. The nonlinear term is v1 × B1. The Lundquist number
is defined to be the ratio of the resistive timescale to Alfven Timescale S = τR/τA = µ0vAL/η. Note: this
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can be rederived from twiddle algebra in the induction equation by considering only the convective term on
the RHS to get τA and only the diffusive term on the RHS to get τR. This number appears on Sweet Parker
problems too so it’s worth knowing how to derive it quickly.

After solving for η in terms of S and subbing in, we get:

∂Ψ1

∂t
= v0 ×B1 + v1 ×B0 + v1 ×B1 −

µ0vAL

S
J1 (9)

where B1 and J1 are defined

B1 = ẑ ×∇Ψ1 (10)

J1 =
1

µ0
∇×B1 (11)

3 Part c

In the ”constant-Ψ” approximation, the flux function is constant along the island boundary.

Ψ = Ψ0 +Ψ1 = Constant we can choose = 0 (12)

bL log
(
cosh

( x

L

))
+Ψ1(t) cos(ky) = 0 (13)

Taylor expand Ψ0 for small x using cosh(ϵ) ≈ 1 + ϵ2/2, log
(
1 + ϵ2/2

)
≈ ϵ2/2 and take the island width W

equal to 2x.

bL
x2

2L2
= −Ψ1(t) cos(ky) (14)

b
W 2

8L
= −Ψ1(t) cos(ky) (15)

W (t) =

√
8LΨ1(t) cos(ky)

b
(16)

max(W (t)) =

√
8LΨ1(t)

b
(17)

In the limit of ideal MHD, the magnetic field is frozen into the fluid and the magnetic topology cannot
change. Assuming an instantaneous change from resistive to ideal MHD, the island width growth is halted.
Therefore, the island width is a constant value at whatever it was before this change.

4 Part d

In the linear regime, the island experiences a growth rate γL ∼ S−3/5/τA according to the tearing mode
growth rate. However, the growth saturates and slows to γNL ∼ 1/τR in the nonlinear regime when the
island width becomes comparable to the resistive layer. At this point, there are significant modifications to
the underlying magnetic structure (see Goldston page 360 or Bhattacharjee page 269 for more info).
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