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4) MHD - Force Free Flux Tube

We consider a force free flux tube. This means J × B = ∇P = 0. It is sometimes called a parallel pinch
because J ‖ B. 1 This is actually a constraint that

P (r) = P0

We are also given “an equal number radians is twisted per unit length”. Let us interpret this to mean axial
length dθ/dz = k is constant. This is the same as specifying the safety factor

q(r) = q0

Together, these two functions uniquely specify an MHD system. This system is called the Gold-Hoyle flux
tube.2 It happens to be a 1D system (all variables depend only on r) which lives in 3 dimensions.

a) magnetic fields

We can use Ampere’s law to write

µ0J = ∇×B =
1

r

 r̂ rθ̂ ẑ
∂r 0 0
0 rBθ Bz

 =

 0
−∂rBz

1
r∂r(rBθ)


Then the force-free condition gives

0 = J ×B = − 1

µ0

[
1

r
Bθ∂r(rBθ) +Bz∂rBz

]
which implies

Bz∂rBz = −1

r
Bθ∂r(rBθ)

For the second constraint we can write the field line following equation

d~r

d ~B
=
rdθ

Bθ
=
dz

Bz

which yields

k =
dθ

dz
=

Bθ
rBz

So we have two variables and two equations. Let us eliminate Bθ = krBz and solve

∂rBz = −∂r
[
(kr)2Bz

]
We can solve this first order ODE

B′
z

Bz
= − 2k2r

1 + k2r2
= − d

dr
ln(1 + k2r2)

1See Freidberg, Ideal MHD Ch 5
2T. Gold, F. Hoyle, “On the origin of solar flares,” Royal Astronomical Society (1960) link.
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and use the convention B(r = 0) = B0 on axis to write

Bz(r) = B0

(
1

1 + k2r2

)
It follows immediately that

Bθ(r) = B0

(
kr

1 + k2r2

)
You can check that this satisfies dθ/dz = Bθ/rBz.

Note that Bθ = Bz at kr = 1, where Bθ attains a max, and Bθ > Bz for kr > 1.

b) flux and force balance

Now we are told the flux tube has some finite radius a. Let us calculate the axial flux

Φ =

∫
B · dA = πB0

∫ a

0

2r

1 + k2r2
dr = πa2B0

[
ln(1 + k2a2)

k2a2

]
Next we are asked, what if there is kinetic gas pressure P outside the flux tube? The flux tube defines a
region where ~J flows such that J ×B = 0. Outside the flux tube ~J = 0. This means Bz(r > a) = 0, but the
poloidal field still exists from the current enclosed within the flux tube

Bθ(r > a) = Bθ(a)
a

r

Since Bθ is continuous, both sources of poloidal pressure are continuous across the flux tube boundary. 3

That means the pressure drop is maintained by the axial field along

∆P =
B2
z (a)

2µ0
=

B2
0

2µ0

(
1

1 + k2a2

)2

3In general force balance in screw pinch is described by

d

dr

(
P +

B2
z +B2

θ

2µ0

)
+
B2
θ

µ0r
= 0

For our case (the parallel pinch) J ×B = ∇P = 0 so the first term vanishes.
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c) increasing twist

What happens if we increase the twist k = dθ/dz while hold Φ constant? Flux is linear in axial field B0 so
this yields a straightforward relation

B0 =

(
Φ

πa2

)
k2a2

ln(1 + k2a2)

Given constant flux, B0 increases monotonically with ka.

What if we also hold constant the pressure outside the flux tube?

B0 = (1 + k2a2)
√

2µ0∆P

This appears to contradict the constant flux constraint, unless ∆P = P −P0 for some finite internal pressure
P0. Previously the internal pressure was a free function which may have varied against B0. 4 Now with the
additional constraint that both Φ and P external be constant (while a is also implicitly held constant) we
can specify

P0 = P − B2
0

2µ0

(
1

1 + k2a2

)2

= P − 1

2µ0

(
k2a2

1 + k2a2

)2 [
Φ/πa2

ln(1 + k2a2)

]2

4Indeed we see in the general screw pinch (previous footnote) pressure P and axial field B2
z/2µ0 are interchangeable (!), up

to boundary conditions.
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