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4) MHD - Force Free Flux Tube

We consider a force free flux tube. This means J x B = VP = 0. It is sometimes called a parallel pinch
because J || B. ! This is actually a constraint that
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We are also given “an equal number radians is twisted per unit length”. Let us interpret this to mean axial
length df/dz = k is constant. This is the same as specifying the safety factor

q(r) = qo
Together, these two functions uniquely specify an MHD system. This system is called the Gold-Hoyle flux

tube.? It happens to be a 1D system (all variables depend only on r) which lives in 3 dimensions.

a) magnetic fields

We can use Ampere’s law to write
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Then the force-free condition gives
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which implies
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For the second constraint we can write the field line following equation
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which yields
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So we have two variables and two equations. Let us eliminate By = krB, and solve
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We can solve this first order ODE
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1See Freidberg, Ideal MHD Ch 5
2T. Gold, F. Hoyle, “On the origin of solar flares,” Royal Astronomical Society (1960) link.


https://academic.oup.com/mnras/article/120/2/89/2602255

and use the convention B(r = 0) = By on axis to write
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It follows immediately that

kr
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You can check that this satisfies df/dz = By/rB,.
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Note that By = B, at kr = 1, where By attains a max, and By > B, for kr > 1.

b) flux and force balance
Now we are told the flux tube has some finite radius a. Let us calculate the axial flux
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Next we are asked, what if there is kinetic gas pressure P outside the flux tube? The flux tube defines a
region where J flows such that J x B = 0. Outside the flux tube J = 0. This means B,(r > a) = 0, but the
poloidal field still exists from the current enclosed within the flux tube

Bo(r > a) = Bg(a)%

Since By is continuous, both sources of poloidal pressure are continuous across the flux tube boundary. 3

That means the pressure drop is maintained by the axial field along
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3In general force balance in screw pinch is described by
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For our case (the parallel pinch) J X B = VP = 0 so the first term vanishes.
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c) increasing twist

What happens if we increase the twist k = dfl/dz while hold ® constant? Flux is linear in axial field By so
this yields a straightforward relation
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Given constant flux, By increases monotonically with ka.
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What if we also hold constant the pressure outside the flux tube?

By = (1 + k*a?)\/2u0AP

This appears to contradict the constant flux constraint, unless AP = P — P, for some finite internal pressure
Py. Previously the internal pressure was a free function which may have varied against By. * Now with the
additional constraint that both ® and P external be constant (while a is also implicitly held constant) we
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4Indeed we see in the general screw pinch (previous footnote) pressure P and axial field B2 /2ug are interchangeable (1), up
to boundary conditions.



