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1 Dispersing Beam

We consider a distribution that starts from a monoenergetic beam

f(t = 0,v) =
n

2πv2
0

δ(v − v0)δ(ξ − 1)

where ξ = v‖/v = cos θ is the pitch angle relative to the initial condition. Let us calls this initial distribution
f0. It evolves under a Lorentz collision operator

C[f ] =
ν

2

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
=
ν

2

∂

∂ξ

[
(1− ξ2)

∂f

∂ξ

]
= νL[f ]

These are “3 forms” of the same expression which might come in hand at different points of the problem.

a) short time diffusion

For short times (νt� 1) the beam has only diffused slightly. We would like to use this to find an approximate
form for f . The small angle approximation comes to mind

sin θ ≈ θ

This makes the first form of C[f ] look like a 2D cylindrical Laplacian

C[f ] ≈ ν

2

[
1

θ

∂

∂θ

(
θ
∂f

∂θ

)]
where θ plays the role of radius. 1 As a result we may write

df

dt
= C[f ]

as
∂tf −

ν

2
∇2f = f0δ(t)

Using the Green’s function method, we can write

G

(
t, R
t′, R′

)
=

1

4πτ
e−(R−R′)2/4τ

1The 2D Laplacian in (R, φ) coordinates is given as part of the problem

∇2 =
1

R

(
R
∂

∂R

)
+

1

R2

∂2

∂φ2
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for τ = t− t′ > 0, as prescribed in the problem statement. In our case, this translates to

G

(
t, θ
t′, θ′

)
=

1

2πντ
e−(θ−θ′)2/2ντ

Then taking a 2D convolution with the source yields

f(νt� 1, v, θ) =

∫
G

(
t, θ
0, θ′

)
f0(θ′) dθ′ dφ′

=
n

2πv2
0

δ(v − v0)

∫
e−(θ−θ′)2/2ντ

ντ
δ(θ′) dθ′

=
n

2πv2
0

δ(v − v0)
e−θ

2/2ντ

ντ

The initial average change in θ can be described 2

〈
θ2
〉

=

∫
θ2f(θ) dθ∫
f(θ) dθ

= 2ντ

b) long time diffusion

Now we would like to consider later times when
〈
θ2
〉
∼ 1. Here it is more useful to use the 3rd form of

C[f ] = νL[f ] where we know that Legendre polynomials Pl(ξ) are the eigenfunctions

L[f ] =

∞∑
l=0

L[Pl(ξ)] = −
∞∑
l=0

l(l + 1)

2
Pl(ξ)

Since C[f ] only has pitch-angle scattering, and no slowing down or ν(v), the beam stays monoenergetic. It
follows that in the Legendre basis

∂Pl
∂t

= −ν
2
l(l + 1)Pl

Then
fl(t, ξ) = fl,0e

− νt2 l(l+1)Pl(ξ)

Since the Legendre polynomial orthonormality condition is∫ 1

−1

Pl(ξ)Pm(ξ) dξ =
δlm

l + 1
2

We have

f(t, v, ξ) =
n

2πv2
0

δ(v − v0)

∞∑
l=0

(
l +

1

2

)
Pl(ξ)e

− νt2 l(l+1) (1)

In the limit νt → ∞ we see that all terms exponentially damp, except for P0(ξ) = 1. This makes sense
because the Lorentz operator tends toward isotropy.

2We should be careful here, because θ is not a coordinate in 1D. By taking the small angle approximation in a spherical
space (const v shell), we have effectively smeared the top of the sphere into a plane. That is how θ could play the role of R in
our 2D cylindrical Laplacian. As a result these integrals are actually 2D integrals〈

θ2
〉

=

∫
θ2f(θ) d2θ∫
f(θ) d2θ

=

∫
θ3f(θ) dθ∫
θf(θ) dθ

=

∫
xe−αx dx∫
e−αx dx

=
Γ(2)/α2

Γ(1)/α
=

1

α
= 2νt

The extra factor of 2 makes sense because random walks diffuse faster in higher dimensions. There is less probability of undoing
a previous step.
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c) Fokker-Planck coefficients

We are asked to calculate a few more expactation values using Eq (1). Let us first recognize∫
f(t, v, ξ) dξ dv dφ = n

Now we may compute

1. 〈
v‖
〉

=

∫
(vξ)f(t, v, ξ) dξ dv dφ∫
f(t, v, ξ) dξ dv dφ

= v0e
−νt

2. 〈
v2
‖

〉
=

∫
(vξ)2f(t, v, ξ) dξ dv dφ∫

f(t, v, ξ) dξ dv

= v2
0

∫ [
2

3
P2(ξ) +

1

3
P0(ξ)

] ∞∑
l=0

(
l +

1

2

)
Pl(ξ)e

− νt2 l(l+1)dξ

=
v2

0

3

(
1 + 2e−3νt

)
3. 〈

v2
⊥
〉

=
〈
v2 − v2

‖

〉
= v2

0 −
〈
v2
‖

〉
=

2v2
0

3

(
1− e−3νt

)
We can see that the distribution starts all

〈
v2
‖

〉
and none

〈
v2
⊥
〉

but then asymptotes to a 1/3 : 2/3 mix, which

agrees with isotropy. To compute the Fokker Planck coefficients we should consider the“jump moments”

A(v) = lim
∆t→0

〈
∆v

∆t

〉

B(v) = lim
∆t→0

〈
∆v∆v

∆t

〉
where

∆v = v(t)− v0

Let us start with the frictional drag vector

A(v) = lim
∆t→0

〈
∆v

∆t

〉
= lim

∆t→0
v0

(
e−ν∆t − 1

∆t

)
= −νv0
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Notice that 〈v⊥〉 = 0 for all time. So 〈v(t)〉 stays parallel to v0, and decreases in magnitude until eventually
there is no directed motion on average. Next let us consider

〈∆v∆v〉 =

(〈
∆v‖∆v‖

〉 〈
∆v‖∆v⊥

〉〈
∆v‖∆v⊥

〉
〈∆v⊥∆v⊥〉

)
=

(〈
∆v‖∆v‖

〉
0

0 〈∆v⊥∆v⊥〉

)
=

(〈
(v‖ − v0)(v‖ − v0)

〉
0

0 〈v⊥v⊥〉

)

= v0v0

1− 2

〈
v‖
〉

v0
+

〈
v2
‖

〉
v2

0

+
(
v2

0I− v0v0

) 〈v2
⊥
〉

v2
0

= v0v0
2

3

[
1− 3e−ν∆t + 2e−3ν∆t

]
+ I

2

3
v2

0

(
1− e−3ν∆t

)
=

2

3
v2

0

(
2− 3e−ν∆t + e−3ν∆t 0

0 1− e3ν∆t

)
Then the velocity diffusion tensor is

B(v) = lim
∆t→0

〈
∆v∆v

∆t

〉
= lim

∆t→0

2

3

v2
0

∆t

(
2− 3e−ν∆t + e−3ν∆t 0

0 1− e3ν∆t

)
=

2

3
v2

0

(
−3ν + 3ν 0

0 3ν

)
= 2νv2

0

(
0 0
0 1

)
= 2ν

(
v2

0I− v0v0

)
In conclusion

A(v) = −ν
(
v0

0

)
B(v) = 2ν

(
0 0
0 v2

0

)
This means particles drag at the collision rate ν, and they diffuse at the random walk rate 2ν.

2 Braginskii Transport

We are given the 0th order Maxwellian

f0(t, r, v) =
n

π3/2v3
T

e−(w/vT )2

where v2
T = 2T (t, r)/m. We are also given the first order equation

Ω
∂f1

∂θ
+ C[f1] = f0

[(
w2

v2
T

− 5

2

)
w · ∇ lnT +

2

v2
T

ww : ∇u

]
(2)
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d) parallel viscous stress

We take the C[f1] = νL[v1] to be velocity-independent pitch angle scattering. We’re asked to find the parallel
viscous stress. Recall the viscous stress tensor 3

Π =

∫
m

(
ww − w2

3
I

)
f1(w) d3w

The parallel component is the gyro averaged part

Π‖ =

∫
m

〈
ww − w2

3
I

〉
θ

〈f1〉θ d
3w

You should recall 4

〈ww〉θ −
w2

3
I =

(
w2
‖ −

w2
⊥
2

)(
b̂b̂− I

3

)
=

(
b̂b̂− I

3

)
w2P2(ξ)

so we find

Π‖ = 2πm

(
b̂b̂− I

3

)∫
w4P2(ξ) 〈f1〉θ dξ dw (3)

Now to calculate f1 we consider the gyroaverage of Eq (2)

C[〈f1〉] = f0

{(
w2

v2
T

− 5

2

)
wP1(b̂ · ∇) lnT + 2

w2

v2
T

[(
b̂b̂− I

3

)
P2 +

I

3

]
: ∇u

}
Since Eq (3) is a projection onto P2, we can drop all the other components in 〈f1〉 to find

−3ν 〈f1〉l=2 = 2f0
w2

v2
T

P2(ξ)

(
b̂b̂− I

3

)
: ∇u

This can be rearranged into

〈f1〉l=2 = − 2

3ν

(
b̂b̂ : ∇u

)
f0
w2

v2
T

P2(ξ)

3You may recall that the general pressure tensor is

P =

∫
mwwf(w) d3w

Viscosity is defined as the P = pI + Π where p = 1
3

tr(I). Note this is not just the off diagonal elements, but all terms which
do not contribute to the trace. Since the 0th moment f0 is an isotropic Maxwellian, it’s viscous moment is 0 by construction.
Therefore the viscous integral starts with f1. This is why Π/p ∼ ε.

4Here are the missing steps

〈ww〉 =

w2
⊥/2 0 0
0 w2

⊥/2 0
0 0 w2

‖

 = w2
‖b̂b̂ +

w2
⊥
2

(
I− b̂b̂

)
such that

〈ww〉 −
w2

3
I =

w2
⊥/2 0 0
0 w2

⊥/2 0
0 0 w2

‖

− w2
⊥ + w2

‖

3

1 0 0
0 1 0
0 0 1

 =
1

3

(
w2
⊥
2
− w2
‖

)1 0 0
0 1 0
0 0 −2

 =

(
w2
‖ −

w2
⊥
2

)(
b̂b̂−

I

3

)
and finally

w2
‖ −

w2
⊥
2

= w2

(
ξ2 −

1− ξ2

2

)
= w2

(
3ξ2 − 1

2

)
= w2P2(ξ)
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where we have used imcompressibility to write I : ∇u = ∇ · u = 0. Therefore

Π‖ = 2πm

(
b̂b̂− I

3

)(
b̂b̂ : ∇u

)
f0
w2

v2
T

P2(ξ)

[∫ 1

−1

P2(ξ)P2(ξ)dξ

] ∫
− 2

3ν
f0
w4

v2
T

dw

= −2π

3ν
m

(
b̂b̂− I

3

)(
b̂b̂ : ∇u

)(2

5

)
2

∫
n

π3/2v5
T

w6e−(w/vT )2dw

= − 4

15
√
π

nmv2
T

ν

(
b̂b̂− I

3

)(
b̂b̂ : ∇u

)[∫ ∞
0

x3e−xdx

]
= − 8

15
√
π

1
2nmv

2
T

ν

(
b̂b̂− I

3

)(
b̂b̂ : ∇u

)
Γ

(
7

2

)
= −p

ν

(
b̂b̂− I

3

)
b̂b̂ : ∇u

e) ion electron scaling

The electron parallel viscosity is a factor of
√
me/mi smaller

Πe
‖

Πi
‖
∼ mev

2
Te 〈fe1 〉

miv2
Ti

〈
f i1
〉 ∼ 〈fe1 〉〈

f i1
〉 ∼ νii

νei
∼ ε

because 〈f1〉 ∝ 1/ν, where ν is determined by C[f ].

f) heat flow

The entropy equation is
3

2
p
d

dt
ln
( p

nγ

)
= −Π : ∇u−∇ · q (4)

We are told the plasma is incompressible, which implies that density is time independent

dn

dt
= −n∇ · v = 0

This enables us to simplify Eq (4) into

3

2
n
dT

dt
= −Π : ∇u−∇ · q

To leading order the RHS is dominated by parallel viscous stress. We can neglect heat flux because it is
dominated by electron transport, which we just showed is at least

√
me/mi smaller. This leaves just

3

2
n
dT

dt
= −Π‖ : ∇u

Let us call that the temperature evolution equation. Substituting our expression for Π‖ yields

3

2
n
dT

dt
=
p

ν
(b̂b̂ : ∇u)2

where we have again used I : ∇u = ∇ · u = 0. To avoid viscous heating and to make temperature time-
independent, it is sufficient to let

b̂b̂ : ∇u = ∇‖u‖ = 0
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The plasma can achieve such a steady state by orienting its B perpendicular to flow such that u‖ = 0, or by
allowing the parallel component of flow velocity to be constant along field lines. If neither of these can be
achieved, the the temperature will increase via viscous heating

dT

dt
=

2

3
(b̂b̂ : ∇u)2T

ν
∝ T 5/2

since ν ∝ 1/T 3/2. Even though we assumed ν to be constant in the collision operator, such a scaling still
gives a valid instantaneous heating rate.
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