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We would like to solve the boundary value problem
ey + f(a)y' + f'(x)y =0
where 0 < € < 1. Our boundary conditions are
y(0) =0

y(1) =1
and f(x) is defined to be both analytic and positive-definite on the interval [0, 1].

The outer solution is straight foward. Recognize
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where we have set the integration constant to satisfy y

The inner solution requires a trick, since fy'+y’' f is a form where the Kruskal-Newton diagram (dominant
balance) does not simplify anything, even in the boudnary layer x — 0. Instead let us recognize
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This sets up a first order ODE with constant inhomogeneity
ey + fy=DB
We would like to set up a stretched parameter
r=eX
such that
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This is now solved by the general form
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where u(x) = /" 74t is related to the homogeneous solution (it’s the inverse). Expanding the stretched
coordinate to match our outer solution we see

. /€
Yin(x) = =< Jo SO B/ u(y)dy + C
0

1 (rz z 4
= e Jo f(0)dt [B / / f(t) dtdy + C’}
€ Jo Jo




Since f(x) is positive definite, the integral fox f(t)dt is monotoically increasing. ! For simplicity let us define

a helper function
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Therefore for x > € the exponent vanishes, and [...] is exponentially suppressed. On the other hand, that
exponential is 1 for  — 0. This enables us to use C to cancel the outer solution for matching y(0) = 0.
We still have freedom to choose B, so let us set it to €2 to create scale separation in derivatives of the Bx /e

term. This yields
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IEven if f is infinitessimal, we can adjust the factor out from to be 1/¢™ for some sufficiently large exponent.



