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Here we look at a simplified derivation for electrostatic drift waves (oscillations having to do with drifts
from inhomogeneous plasma ∇n0. The picture you should have in your head is

where ∇n0 increases in +x̂, homogeneous B points in +ẑ, and the resulting drifts point along ŷ. We will
also assume there is an electrostatic fluctuation 1

φ̃ ∼ ei(k⊥y−ωt)

We suppose the resulting ion velocity perturbation is a combination of E ×B and polarization drifts 2
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1In the more general case, we add a parallel component to the oscillation

φ̃ = φ(x)ei(k⊥y+k‖z−ωt)

as well as an x-dependent amplitude. The resulting dispersion relation from doing a fluid momentum calculation is
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You may compare this with the answer we derive in Eq (3).
2Here’s my favorite derivation of polarization drift
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We see that the polarization drift results from E oscillating in a direction perpendicular B. Although this is derived recursively
from the E×B drift, it is neither asymptotically larger or smaller than E×B. Instead it is proportional to ∝ ω the oscillation
frequency.
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For electrons, we assume they are adiabatic. Therefore the density profile satisfies a Boltzmann distribution

n(x) = n0e
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Taylor expanding both sides shows
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Now we assert quasineutrality

0 =
∑
s

qsns = e [(n0 + ñ)i − (n0 + ñ)e] = −en0
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Plugging in Eq (1) and Eq (2) shows
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Setting the quanitity in {. . .} = 0 yields the dispersion relation. We can further polish the result by
recognizing
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while recalling the electron drift wave frequency 3
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Now the updated drift wave dispersion relation is
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3to derive the drift frequency recall
J ×B = ∇p
J = qnv

∇p = T∇n
then
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it remains only to define
ω∗s = k · v∗s
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