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1 Mirrors with ξ-dependent Source

a) classical mirror

This starts out as your typical mirror problem. The key constraint is the ratio of parallel to perpendicular
kinetic energy at the mid plane. We apply conservation of energy to see that

W
‖
0 +W⊥0 < W⊥f

Tives the trapping condition. But the first adiabatic moment µ = W⊥/B is conserved. Thus the mirror
ratio enters our constraint

W
‖
0

W⊥0
+ 1 <

Bf
B0

= Rm

Now the kinetic energies can be expressed as a function of pitch angle ξ = v‖/v. We see

W
‖
0

W⊥0
=

ξ2

1− ξ2
< Rm − 1

So isolating ξ we find that the trapping condition in pitch-angle space is

ξ < ξc =

√
1− 1

Rm

We see that in the limit Rm → 1 nothing is trapped, and Rm →∞ means everything is trapped as expected.

b) pitch-angle scattering

Now let us introduce a collision operator

C[f ] =
ν

2

∂

∂ξ

[
(1− ξ2)

∂f

∂ξ

]
= νL[f ]

This Lorentz operator isotropizes the pitch angle, but does not alter energy. Particles will scatter into the
loss cone (ξ > ξc). To compensate we introduce a steady-state source

S(v, ξ) =


3ṅ

8πv20ξ
3
c
δ(v − v0)(ξ2c − ξ2) for |ξ| < ξc

0 for |ξ| ≥ ξc

This is a monoenergetic source δ(v − v0) which preferentially introduces particles with large pitch angle
(small v‖ = vξ). To solve for the equilibrium, we write down a steady-state kinetic equation

0 =
df

dt
= C[f ] + S

Since P0 is involved, the Legendre basis will not be of much use, so we go for dirrect integration.

∂

∂ξ

[
(1− ξ2)

∂f

∂ξ

]
= −2

ν
A(ξ2c − ξ2)
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The boundary conditions are f(±ξc) = 0 and f ′(0) = 0. Thus

(1− ξ2)f ′(ξ) = −2

ν
Aξ

(
ξ2c −

ξ2

3

)
which lets us set up

0− f(ξ) = −A
ν

∫ ξc

ξ

2ξ

1− ξ2

(
ξ2c −

ξ2

3

)
dξ

To compute this integral we play the following trick: ξ2 = 1− (1− ξ2). This enables us to write

f(ξ) =
A

ν

[(
ξ2c −

1

3

)∫ ξc

ξ

2ξ

1− ξ2
dξ +

∫ ξc

ξ

2ξ dξ

]

We can also cast the constant coefficient as a Legendre Polynomial

P2(ξc) =
3ξ2c − 1

2

Together this yields

f(ξ) =
2A

3ν

[
P2(ξc) ln

(
1− ξ2

1− ξ2c

)
+
ξ2c − ξ2

2

]
Adding back the constant we have

feq(v, ξ) =
ṅ

4πνv20ξ
3
c

δ(v − v0)

[
P2(ξc) ln

(
1− ξ2

1− ξ2c

)
+
ξ2c − ξ2

2

]
for |ξ| < ξc and feq = 0 otherwise.

c) pressure anistropy

Now we would like to copmute the pressure anisotropy as a fucntion of Rm. Let us start by recognizing that
∆p = p⊥ − p‖ depends on the second Legendre polynomial

∆p =

∫
m

(
w2
⊥
2
− w2

‖

)
feq d

3w

= 2πm

∫
w2

(
w2
⊥
2
− w2

‖

)
feq dξ dw

= −2πm

∫
w4P2(ξ)feq dξ dw

Next we can substitute and integrate over the δ-function

∆p = − ṅv20
2νξ3c

P2(ξc)

∫ ξc

−ξc
P2(ξ)

[
ln

(
1− ξ2

1− ξ2c

)
+
ξ2c − ξ2

2

]
dξ

These integrals are given to us in the problem statement∫ ξc

−ξc
P2(ξ) ln

(
1− ξ2

1− ξ2c

)
dξ = −2

3
ξ3c
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∫ ξc

−ξc
P2(ξ)

(
ξ2c − ξ2

2

)
dξ = −1

3

∫ ξc

−ξc
P2(ξ) [P2(ξ)− P2(ξc)] dξ

=
4

15

[
P2(ξc)

2
− 1

]
ξ3c

Now combining these results we see

−2

3
P2(ξc) +

4

15

[
P2(ξc)

2
− 1

]
= −4

5
ξ2c

Therefore

∆p =
2

5
ṅ
v20
ν
ξ2c =

2

5
ṅ
v20
ν

(
1− 1

Rm

)
When Rm → 1 and there is a weak mirror, ∆p → 0, but when Rm → ∞ the pressure anisotropy is
asymptotically constant. Since particles with fast parallel velocity are preferentially lost, it makes sense that
∆p = p⊥ − p‖ > 0.

2 Braginskii Anistropy

d)

We consider the Braginskii ion pressure anistropy. Let us start with the ion Maxweillian

f0(t, r, w) =
n(t, r)

π3/2v3T
e−(w/vT )2

where v2T = 2T (t, r)/m. Now the kinetic equation which governs the first order correction is

Ω
∂f1
∂θ

+ C[f1] = f0

[(
w2

v2T
− 5

2

)
w · ∇ lnT + 2

(
ww

v2T
− I

3

w2

v2T

)
: ∇u

]
(1)

We are interested in solving for the Braginskii ion pressure anisotropy

∆p = p⊥ − p‖

The partial pressures can be defined

p‖ =

∫
mw2
‖f1 d

3w

p⊥ =

∫
m
w2
⊥
2
f1 d

3w

which gives us a short-cut since the gyro average is defined

〈f1〉θ =
1

2π

∫
f1 dθ

So we only need to compute

p‖ = 2πm

∫ ∞
0

∫ 1

−1
w4ξ2 〈f1〉θ dξ dw

p⊥ = πm

∫ ∞
0

∫ 1

−1
w4(1− ξ2) 〈f1〉θ dξ dw
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The second short-cut is to take the difference

∆p = −2πm

∫ ∞
0

∫ 1

−1
w4

(
3ξ2 − 1

2

)
〈f1〉θ dξ dw (2)

and recognize the Legendre polynomial

P2(ξ) =
3ξ2 − 1

2

Now let’s cash in on that gyroaverage. Eq (1) becomes

C[〈f1〉θ] = f0

[(
w2

v2T
− 5

2

)
〈w〉θ · ∇ lnT + 2

(
〈ww〉θ
v2T

− I

3

w2

v2T

)
: ∇u

]
We should readily recognize

〈w〉θ = w‖b̂

〈ww〉θ = w2
‖ b̂b̂+

w2
⊥
2

(
I− b̂b̂

)
and compute (

w2
‖ b̂b̂+

w2
⊥
2

)
−

(
w2
‖ + w2

⊥

3

)
I =

(
w2
‖ −

w2
⊥
2

)(
b̂b̂− I

3

)
= w2P2(ξ)

(
b̂b̂− I

3

)
Now the kinetic equation becomes

C[〈f1〉θ] = f0

[(
w2

v2T
− 5

2

)
wP1(ξ)∇‖ lnT + 2P2(ξ)

w2

v2T

(
b̂b̂− I

3

)
: ∇u

]
This is very nice because, using the Lorentz operator for ion collisions C[f ] = νL[f ], we can expand

〈f1〉θ =

∞∑
l=0

ul(v)Pl(ξ)

since the Legendre polynomials Pl(ξ) form the eigenbasis for the Lorentz operator with eigenvalues

L[Pl] = − l(l + 1)

2
Pl

Therefore

C[〈f1〉θ] = νL [〈f1〉θ] = −ν (u1P1 + 3u2P2)

to match the RHS. Then equating the orthogonal polynomials shows

u1 = −f0
ν

(
w2

v2T
− 5

2

)
w∇‖ lnT

u2 = −2f0
3ν

w2

v2T

(
b̂b̂− I

3

)
: ∇u

Now lets return to our pressure anistropy Eq (2)

∆p = −2πm

∫ ∞
0

∫ 1

−1
w4P2(ξ) 〈f1〉θ dξ dw
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The Legendre polynomials form an orthonormal basis∫ 1

−1
Pl(ξ)Pm(ξ)dξ =

δlm
l + 1/2

So we find

∆p = −4

3
· 2

5
πm

∫ ∞
0

w4u2 dw

Now let us substitute the Maxwellian for f0 in u2(w) and find

∆p = − 8

15
πm

∫ ∞
0

w4

(
− 2

3ν

)
w2

v2T

(
b̂b̂− I

3

)
: ∇u

[
n0

π3/2v3T
e−(w/vT )2

]
dw

=
8

15
√
π

(
2mn0v

2
T

3ν

)(
b̂b̂− I

3

)
: ∇u

∫ ∞
0

x6e−x
2

dx

=
8

15
√
π

(
2n0T

ν

)(
b̂b̂− I

3

)
: ∇u

∫ ∞
0

y5/2e−ydy

=
8

15
√
π

(
2p

ν

)(
b̂b̂− I

3

)
: ∇u

[
Γ

(
7

2

)]
=
p

ν

(
b̂b̂− I

3

)
: ∇u

where we recall Γ(7/2) = 15
√
π/8. 1 This is the Braginskii ion pressure anisotropy.

e)

We are told that Mikhailovskii-Tsypin order a weakly collisional, magnetized plasma (as opposed to Bragin-
skii which is strongly collisional) and get an extra term

∆p =

{
p

ν

(
b̂b̂− I

3

)
: ∇u

}
− 1

ν

{
q⊥(∇ · b̂) +

1

3
∇ ·
[
b̂(q⊥ − q‖)

]}
We don’t see these extra terms because heat flux is next order in Braginskii transport. Let’s call the first
term ∆p1. Its ordering goes like

∆p1 ∼
p

νii

ui
L
∼ p ui

vTi

λii
L

Let’s call the second term ∆p2. Noting that q ∼ pvT (λii/L) we find

∆p2 ∼
q

νiiL
∼ pvTi

vTi

λii
L

λii
L

The key difference between Branginskii and Mihailovskii is high-flow vs low-flow ordering(
ui
vTi

)
B

∼ 1

(
ui
vTi

)
M

∼ ε

Thus we see ∆p2 always scales like ∼ pε2, while ∆p1 scales like ∼ pε2 only for Mikhailovskii, but ∼ pε for
Bragniskii. Since the second term is next order for Braginskii, only the first term appears.

1There’s a quick mnemonic for this. All you need is Γ(1/2) =
√
π and the factorial property Γ(n+ 1) = nΓ(n). Then

Γ

(
7

2

)
=

5

2
·

3

2
·

1

2
·
√
π =

15

8

√
π
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