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This problem looks at magnetized warm plasma waves. We are given the dielectric tensor
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The electrostatic dispersion relation is *

D, = (kle|k) =0
Considering k = (k_,0, k) this shows
k3 S+ kﬁP =0 (1)

Now we would like to find the dispersion relation w(k) assuming
e w = (); (near ion cyclotron resonance)
o O, kK w/kH < vre (warm electrons, cold ions)
e kApe < 1 (wavelength is large compared to sheath)

We should also note that the problem states Ilya’s convention vZ, = T,/m., which implies C? = T, /m;. *
Also, note T, = T, e“. Since we are near ion resonance, L > R. Therefore
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The parallel propagation corresponds to Langmuir waves. Compared to the cold magnetized fluid case, the

warm magentized fluid has an extra v(kjvre)® *
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1Here’s a quick derivation, start from Maxwell’s equation in matter:
V-D =4mp
then expand D = ¢E with E = —V¢
=V - (eV¢) = 4dmpo
For waves we interested in the homogeneous solution. So linearizing gives
Dyop=k-(ek)p=0

This can be written as an inner product
Dg = (klelk)

2not to be confused with Matt’s convention vy, = 2T. /me and C’S2 = 2T./m;. Fortunately, if you stay consistent, either
will give the same answer.
3Let us give the proof as an appendix.



We can set v =1 and vr = wpAp to write
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Next we substitute both into the dispserion relation Eq (1). This shows
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Note that the k| dependence has cancelled. Rearranging terms shows
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where we have used (A Dewp,»)2 = % = C2. Now squaring the relation shows

1/ ¢\’
2:92 2k2 - s

We assumed Cs < w/kj. We have w =~ Q;. So supposing k_ is only slightly larger than k), we can drop the
last term. Therefore

w? ~ QF + C%k3
Appendix: Warm Dielectric Tensor

A short derivation involves the usual suspects

1. momentum equation
ov 4 Vp
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2. continuity equation
on +V-(nv)=0
- c(nv) =
ot
3. isoentropic closure
drp
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We rewrite the last condition as 5 o
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and take a derivative on the momentum equation to find
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This can be lienarized to see q
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Now substituting J = gnv we find
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