This problem looks at magnetized warm plasma waves. We are given the dielectric tensor

$$
\epsilon=\left(\begin{array}{ccc}
S & -i D & 0 \\
i D & S & 0 \\
0 & 0 & P
\end{array}\right)
$$

The electrostatic dispersion relation is ${ }^{1}$

$$
D_{\phi}=\langle k| \epsilon|k\rangle=0
$$

Considering $\mathbf{k}=\left(k_{\perp}, 0, k_{\|}\right)$this shows

$$
\begin{equation*}
k_{\perp}^{2} S+k_{\|}^{2} P=0 \tag{1}
\end{equation*}
$$

Now we would like to find the dispersion relation $\omega(\mathbf{k})$ assuming

- $\omega \approx \Omega_{i}$ (near ion cyclotron resonance)
- $C_{s} \ll \omega / k_{\|} \ll v_{T e}$ (warm electrons, cold ions)
- $k \lambda_{D e} \ll 1$ (wavelength is large compared to sheath)

We should also note that the problem states Ilya's convention $v_{T e}^{2}=T_{e} / m_{e}$, which implies $C_{s}^{2}=T_{e} / m_{i}$. ${ }^{2}$ Also, note $T_{e}=T_{e}^{\|}$. Since we are near ion resonance, $L \gg R$. Therefore

$$
\begin{aligned}
S=\frac{L+R}{2} \approx \frac{L}{2} & =\frac{1}{2}\left(1-\frac{\omega_{p i}^{2}}{\omega\left(\omega-\Omega_{i}\right)}-\frac{\omega_{p e}^{2}}{\omega\left(\Omega+\left|\Omega_{e}\right|^{2}\right)}\right) \\
& =-\frac{\omega_{p i}^{2}}{2 \Omega_{i}\left(\omega-\Omega_{i}\right)}
\end{aligned}
$$

The parallel propagation corresponds to Langmuir waves. Compared to the cold magnetized fluid case, the warm magentized fluid has an extra $\gamma\left(k_{\|} v_{T e}\right)^{2}{ }^{3}$

$$
\begin{aligned}
P & =1-\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}-\gamma k_{\|}^{2} v_{T s}^{2}} \\
& =1-\frac{\omega_{p i}^{2}}{\omega^{2}}+\frac{\omega_{p e}^{2}}{\gamma k_{\|}^{2} v_{T e}^{2}} \\
& \approx \frac{\omega_{p e}^{2}}{\gamma k_{\|}^{2} v_{T e}^{2}}
\end{aligned}
$$

[^0]We can set $\gamma=1$ and $v_{T}=\omega_{p} \lambda_{D}$ to write

$$
P=\left(\frac{1}{k_{\|} \lambda_{D e}}\right)^{2}
$$

Next we substitute both into the dispserion relation Eq (1). This shows

$$
0=-\frac{\omega_{p i}^{2} k_{\perp}^{2}}{2 \Omega_{i}\left(\omega-\Omega_{i}\right)}+\frac{1}{\lambda_{D e}^{2}}
$$

Note that the $k_{\|}$dependence has cancelled. Rearranging terms shows

$$
\begin{aligned}
\omega & =\Omega_{i}+\frac{\left(\lambda_{D e} \omega_{p i} k_{\perp}\right)^{2}}{2 \Omega_{i}} \\
& =\Omega_{i}+\frac{C_{s}^{2} k_{\perp}^{2}}{2 \Omega_{i}}
\end{aligned}
$$

where we have used $\left(\lambda_{D e} \omega_{p i}\right)^{2}=\frac{T_{e}}{m_{i}}=C_{s}^{2}$. Now squaring the relation shows

$$
w^{2}=\Omega_{i}^{2}+C_{s}^{2} k_{\perp}^{2}+\frac{1}{4}\left(\frac{C_{s}}{\Omega_{i} / k_{\perp}}\right)^{2}
$$

We assumed $C_{s} \ll \omega / k_{\|}$. We have $\omega \approx \Omega_{i}$. So supposing k_{\perp} is only slightly larger than $k_{\|}$, we can drop the last term. Therefore

$$
w^{2} \approx \Omega_{i}^{2}+C_{s}^{2} k_{\perp}^{2}
$$

Appendix: Warm Dielectric Tensor

A short derivation involves the usual suspects

1. momentum equation

$$
\frac{\partial \mathbf{v}}{\partial t}=\frac{q}{m} \mathbf{E}-\frac{\nabla p}{m n}
$$

2. continuity equation

$$
\frac{\partial n}{\partial t}+\nabla \cdot(n \mathbf{v})=0
$$

3. isoentropic closure

$$
\frac{d}{d t}\left[\frac{p}{n^{\gamma}}\right]=0
$$

We rewrite the last condition as

$$
\frac{1}{n^{\gamma}}\left(\frac{\partial p}{\partial t}-\gamma T \frac{\partial n}{\partial t}\right)=0
$$

and take a derivative on the momentum equation to find

$$
\frac{\partial^{2} \mathbf{v}}{\partial t^{2}}-\nabla(\nabla \cdot \mathbf{v})=\frac{q}{m} \mathbf{E}
$$

This can be lienarized to see

$$
\left(-\omega^{2}+\gamma v_{T}^{2} \mathbf{k k}\right) \mathbf{v}=-i \omega \frac{q}{m} \mathbf{E}
$$

Now substituting $\mathbf{J}=q n \mathbf{v}$ we find

$$
\mathbf{J}=\frac{i \omega}{4 \pi}\left(\frac{\omega_{p}^{2}}{\omega^{2}-\gamma v_{T}^{2} k^{2}}\right) \mathbf{E}
$$

Now $\mathbf{J}=\sigma \mathbf{E}$ and $\chi=\frac{4 \pi i}{\omega} \sigma$ so

$$
\chi_{\|}=-\frac{\omega_{p}^{2}}{\omega^{2}-\gamma v_{T}^{2} k^{2}}
$$

and

$$
\epsilon=1+\sum_{s} \chi_{s}
$$

gives

$$
P=1-\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}-\gamma_{s} v_{T s}^{2} k^{2}}
$$

[^0]: ${ }^{1}$ Here's a quick derivation, start from Maxwell's equation in matter:

 $$
 \nabla \cdot D=4 \pi \rho
 $$

 then expand $D=\epsilon E$ with $E=-\nabla \phi$

 $$
 -\nabla \cdot(\epsilon \nabla \phi)=4 \pi \rho_{0}
 $$

 For waves we interested in the homogeneous solution. So linearizing gives

 $$
 D_{\phi} \phi=k \cdot(\epsilon k) \phi=0
 $$

 This can be written as an inner product

 $$
 D_{\phi}=\langle k| \epsilon|k\rangle
 $$

 ${ }^{2}$ not to be confused with Matt's convention $v_{T e}=2 T_{e} / m_{e}$ and $C_{s}^{2}=2 T_{e} / m_{i}$. Fortunately, if you stay consistent, either will give the same answer.
 ${ }^{3}$ Let us give the proof as an appendix.

