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a)

Let us start by considering a generic mirror. The trapping condition can be found by conservation of energy

W
‖
0 +W⊥

0 < W⊥
f + 0

From here we normalize by the midplane perpendicular energy to find

W
‖
0

W⊥
0

+ 1 <
W⊥

f

W⊥
0

=
Bf

B0
= Rm

Therefore the trapping condition is

W
‖
0

W⊥
0

< Rm − 1 (1)

b)

We can show this pictorially as

Here we see the usual cast of characters. The ratio of energy at the midplane determines the trapping

conditions everywhere. Particles with arbitrarily large W
‖
0 will always escape. Larger mirror ratio Rm

indicates a larger region of trapped particles. Conversely all particles escape in the limit Rm → 1.

c)

Now we specify a particular field profile

B =


B0

(
1 + z2

L2

)
ẑ (z/L)2 < c2

B0(1 + c2)ẑ (z/L)2 > c2

This means the mirror has total length ∆z = 2cL and that the mirror ratio is Rm = 1 + c2.
The turning points can be found by applying conservation of energy again

W
‖
0 +W⊥

0 = W⊥
z
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Doing the same normalization

W
‖
0

W⊥
0

+ 1 =
W⊥

z

W⊥
0

= 1 +
(zT
L

)2
Therefore (zT

L

)2
=
W

‖
0

W⊥
0

(2)

Note that the maximum turning points are zT = ±cL, which is larger than L. For some reason the field
is set up such that L is not the length of the mirror, but instead the length after which the field strength
increases a quadratic multiple.

d)

Now we impose an axially gravitational field
g = −gẑ

This makes it easier to escape the bottom, and harder to escape the top. So to write a trapping condition,
we can focus on the bottom. Let us start once more from energy conservation

W
‖
0 +W⊥

0 = W⊥
z +mgz

Since it is more difficult to confine the bottom, we will use that as the trapping condition

W
‖
0

W⊥
0

+ 1 < Rm −
mgcL

W⊥
0

If the ratio of parallel to perpendicular energies exceeds this threshold at the midplane, then the particle will
escale through z < −cL. But we also know from part (c) that Rm = 1 + c2. Thus the trapping condition is

W
‖
0

W⊥
0

< (Rm − 1)− mgcL

W⊥
0

= c2
(

1− mgL

cW⊥
0

)
Notice that the first line reduces to our original trapping condition in Eq (1) in the limit g → 0. The second
line shows that there is now a minimum perpendicular energy requirement for trapping

W⊥
0 >

1

c
(mgL) (3)
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This can be interpretted as the minimum perpendicular energy needed to offset the parallel accleration picked
up from gravity. This is in addition to parallel to perpendicular midplane energy ratio constraint, which has
the same slope as before Rm − 1 = c2.

e)

Now we wish to find the turning points. This will be a function of the midplane energies, as different particles
will execute different orbits. This time we find

W
‖
0

W⊥
0

=
(zT
L

)2
+
mgzT
W⊥

0

This is a quardatic equation (zT
L

)2
+ 2

(
mgL

2W⊥
0

)
zT
L
− W

‖
0

W⊥
0

= 0

So we find

zT
L

= −mgL
2W⊥

0

±

√(
mgL

2W⊥
0

)2

+
W

‖
0

W⊥
0

First note that this recovers the original trapping condition Eq (2) in the limit g → 0. Relative to that case,
the top and bottom turning points are unformly shifted by −zg/2 where

zg =
mgL2

W⊥
0

This lets us recast the new turnning points as

zH = −zg
2

+

√
z2T +

(zg
2

)2
(4)

zL = −zg
2
−
√
z2T +

(zg
2

)2
(5)

From here we can see a relation
zg = −(zH + zL) > 0 (6)

The signs just indicate that |zL| > zH , which we expect because the mirror shifted net down in the direction
of gravity. We also see (

zH − zL
2

)2

= z2T +
(zg

2

)2
Substituting Eq (6) we see

z2T = −zHzL > 0 (7)
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f)

Next we suppose that gravity is adiabatically increased from gi = 0 to gf = g.

Since µ = W⊥/B is an adiabtic invaraint, the fact that B does not change while ramping gravity implies
that W 0

⊥ also stays constant.

g)

To analyze the effect on W
‖
0 we should introduce the second adiabatic invariant

J =

∮
mv‖dl

where the integral is taken over the cyclic bounce path. 1 Let us rewrite this in a dimensionless form in
hopes that it will simplify algebra downstream

K =
1

L

∫ zH

zL

√
W

‖
z

W⊥
0

dz (8)

Here zH > 0 and zL < 0 are the turning points from (e), W⊥
0 is a constant thanks to (f), and W

‖
z = W ‖(z)

is a function to be determined. We can constrain this function using energy conservation

W ‖(z) +W⊥(z) +mgz = W
‖
0 +W⊥

0

Normalizing by W⊥
0 we see

W
‖
z

W⊥
0

+

(
1 +

z2

L2

)
+
mgz

W⊥
0

=
(zT
L

)2
+ 1

Therefore

W
‖
z

W⊥
0

=
(zT
L

)2
− mgz

W⊥
0

− z2

L2

=
1

L2

(
z2T − zgz − z2

)
=

1

L2

[
(−zHzL) + (zH + zL)z − z2

]
=

1

L2
(zH − z)(z − zL)

where we used Eq (6) and Eq (7) from (e). Each quantity in paraentheses is positive, since z bounces between
zH > 0 and zL < 0. Therefore the product is positive, as it should be. Now our adiabatic integral becomes

K =
1

L2

∫ zH

zL

√
(zH − z)(z − zL) dz =

π

8

(
zH − zL

L

)2

1In general a conserved ‘action’ can be defined for any coordinate undergoing quasi periodic motion

J =

∮
pdq

This is the basis of Hamilton and Jacobi’s action-angle mechanics.

4



This is an elliptic integral, which is given in the problem statement. K is an adiatibatic invariant, but zH
and zL each change as functions of g. Substituting the difference between Eq (4) and Eq (5) we find

K =
π

2

[(zT
L

)2
+

(
zg/2

L

)2
]

Therefore

Ki =
π

2

[
W

‖
0,i

W⊥
0

+

(
mgiL

2W⊥
0

)2
]

(9)

Kf =
π

2

[
W

‖
0,f

W⊥
0

+

(
mgfL

2W⊥
0

)2
]

(10)

Letting
Ki = Kf

and recognizing gi = 0 and gf = g we find

W
‖
0,i −W

‖
0,f =

(mgL)2

4W⊥
0

=
1

4
mgzg

This means the net change is negative

∆W
‖
0 =

(
W

‖
0,f −W

‖
0,i

)
= −1

4
mgzg < 0 (11)

As gravity is slowly turned on, the midplane parallel energy decreases. This can be understood from the fact
that |zL| > zH means (z = 0), the midplane of the magnetic field, is no longer the midplane of the bounce
trajectories. Since the lower path is longer, particles have to fight gravity to get to the magnetic midplane.
Thus the parallel energy measured at that location is decreased. 2

i)

Next we are interested in particles that are initially trapped and later detrapped by the adiabatically activated
g field.

For gi = 0 the picture looks like (b), for gf = g the picture is described by (d-g). We can think of two
changes in parallel energy. One is the change in the trapping condition

−∆W
‖
1 = (Rm − 1)∆W⊥ = c2

(
mgL

c

)
= mgLc

This is the new, more strict trapping condition we considered in Eq (3) from part (d). However, there is a
change in particle energy that competes to stay up to date with the new rules

−∆W
‖
2 =

1

4
mgzg =

(mgL)2

4W⊥
0

This is the adiabatic loss of parallel energy from part (g). It is possible that if a particle loses enough W⊥
0

to stay within the shifted trapping condition, it stays trapped. While the shift in trapping condition ∆W
‖
1

is constant, the adiabatic change in energy is ∆W
‖
2 ∝ 1/W⊥

0 via the W⊥
0 dependence in zg. Particles with

2What if we plotted the W ‖(z) profile at different times as g changes cyclically, would we see a hysteris?
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large perpendicular energy benefit less from the adiabatic absorption of parallel energy. The intersection

point comes from setting ∆W
‖
1 = ∆W

‖
2 which shows

W⊥
0 =

mgL

4c
<
mgL

c

This condition is always satisfied for the new trapping condition. There is no location where all particles at
a given W⊥

0 are saved. The base case scenario is at W⊥
0 = mgL/c where 1/4 of the particles are saved. The

‘safe fraction’ then decreases as 1/W⊥
0 .

The region of de-trapped particles is bounded by W⊥
0 > mgL/c on the right, W

‖
0 /W

⊥
0 < c2 from above (the

g = 0 trapping condition), and from below by

W
‖
0 > c2

(
W⊥

0 −
mgL

c

)
+

(mgL)2

4W⊥
0

Therefore the corner of the de-trapped region is given by (W⊥
0 ,W

‖
0 ) = (mgL/c,mgLc/4).

h)

Finally we reverse the problem and slowly de-activate the field such that gi = g and gf = 0. We find that

the action in Eq (9) and Eq (10) are switched. So now there is a net gain in parallel midplane energy

∆W
‖
0 =

(
W

‖
0,f −W

‖
0,i

)
=

1

4
mgzg > 0 (12)

6



Also the trapping condition is relaxed. None of the particles are lost. Some do gain a bit of parallel energy,
but this does not fully populate the new trapped particle frontier, so there is extra space to spare.
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