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Let us consider a Spitzer Harm problem in a magnetic field. We can start from the kinetic equation
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is the fluid conductivity. We can setup a Chapman-Enskog-Braginskii expansion for
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Let us examine Eq (1) term by term, comparing against Ωef0
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An isotropic function (not necessarily Maxwellian) f0(v, ξ, φ) = f(v) solves Eq (3) because both L[f ] and ∂φ
are anihilated.

b)

To solve the first order problem we can take a gyroaverage.
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where we let v̂ · ẑ = cos θ = ξ. We see that not just ∂φ but also E⊥ are eliminated by the gyroaverage.
Next we recognize that the Legendre Polynomial P1(ξ) = ξ is an eigenfunction of the Lorentz operator
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Without loss of generality let us take E⊥ = x̂E⊥ cosφ. Subtracting off the gyro-averaged part we find
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1the key difference is that E/ED brings in a factor of νei, which pushes the base case to first order in δ. This does not occur
in typical Braginskii. It is a feature of the Spitzer-Harm-Bragniskii combo.
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Now to find the effect of collisions we should go to second order in the subsidiary expansion O(δ2ε)
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2Techniquely f̃1 does have a θ dependence, since it is proportional to
√

1− ξ2. A more rigorous way (found by R. Nies) to

show C[f̃01 ] = 0 is to argue
∂

∂φ

[
Ωef̃

1
1 − C[f̃01 ]φ−

eE⊥
me

sinφ
√

1− ξ2
df0

dv

]
= 0
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Since f̃2
1 is in phase with E⊥, we can interpret it as the ⊥-component. Because f̃1

1 is π/2 out of phase, it can
be interpreted as a ×-component. This matches our intution from Braginskii transport, where cross field ⊥
depends on ν and is an order δ down from ×, which arises from diamagnetic flow and has nothing to do
with velocity. Here this no pressure gradient, and the cross field transport is instead an E × B drift as we
shall see in part (f).

c)

Let us now take f0 to be Maxwellian
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Parallel current comes from 〈f1〉φ because it is the only piece of f1 that interacts with E‖. We may write
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The last integral is a gamma function Γ(4) = 3!. The stack of constants in parentheses is the fluid conductivity
from Eq (2), which is what we set out to show.

d)

If we use the full Landau operator instead of the Lorentz pitch-angle scatter for νei, we should also include
pitch angle scattering from νee. This would slightly decrease the σ multiplicative factor to less than 32π/3
because νee tends to isotropize the plasma, and this reduces velocity differences (which give rise to drag,
and result in net current). On the other hand, if we included ion motions the conductivity would tend to
increase, because E‖ would push some ion current in the direction opposite to electrons.
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e)

We are told the other moments correspond to
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Compared to parallel current, cross field transport is suppresed by δ = (Ωeτei)
−1 because cross field motion

is inhibited by the fieldlines. In terms of a random walk arguement, the parallel step size is λmfp while the
cross field stepsize is only ρL. This gives an heuristic explanation for
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f)

The × conductivity is independent of collision frequency
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This × flow arises from E ×B drift. Let us recall Eq (7). Using Ωe = −eB/me the coefficient out front can
be rewritten
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In this problem both E and B are stationary and homogeneous. So B defines the parallel direction, the
component of E orthogonal to B defines the perpendicular direction, and this uniquely species a 3rd direction
for E ×B drift.
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