This is a quick asymptotics problem on WKB. We're given an almost-simple harmonic oscillator with slowly varying frequency

$$y'' + \Omega(t)^2 y = 0 \tag{1}$$

**a**)

We would like to find a leading order asymptotic. WKB says we should guess solutions of the form  $y = e^{S(t)}$ . In this case

$$y' = S'y$$

$$y'' = (S'^2 + S'')y$$

Eliminating y from Eq (1) we see

$$S'^2 + S'' + \Omega^2 = 0$$

So we suppose the dominant balance <sup>1</sup>

$$S'^2 \sim -\Omega^2$$

Solving this balance yields

$$S' = \pm i\Omega$$

which we can integrate as a first order ODE

$$S(t) = \pm i \int_{-\infty}^{t} \Omega(t') dt'$$

So the solution is

$$y(t) = e^{S(t)} = e^{\pm i \int_{-t}^{t} \Omega(t')dt'}$$

A sufficient condition for this to be true, is that the dominant balance holds. So we require  $S'^2 \gg S''$ , which translates to the condition

$$\frac{\Omega'}{\Omega^2}\ll 1$$

Physically, this can be interpretted as saying the frequency  $\Omega(t)$  changes on a time scale long compared to  $\Omega^{-1}$ . We can go a step further by expanding

$$S(t) = S_0 + S_1$$

where  $S_0' = \pm i\Omega$ . Now the expansion becomes

$$(S_0' + S_1')^2 + (S_0'' + S_1'') + \Omega^2 = 0$$

Subtracting off our 0th order solution leaves

$$2S_0'S_1' + S_1''^2 + S_0'' + S_1'' = 0$$

$$S' \sim x^{n-1}$$

$$S'' \sim x^{n-2}$$

$$S'^2 \sim x^{2(n-1)}$$

<sup>&</sup>lt;sup>1</sup>This comes from experience - the higher powers of lower derivatives usually end up being leading order. For example, suppose  $S = x^n$ . Then

Now we intuit that the dominant balance is

$$2S_0'S_1' \sim -S_0''$$

This gives

$$S_1' = -\frac{S_0''}{2S_0'} = -\frac{\Omega'}{2\Omega}$$

Therefore

$$S_1(t) = -\frac{1}{2} \ln \left( \frac{\Omega(t)}{\Omega(0)} \right)$$

Thus the leading order solution is

$$y(t) = e^{S_0 + S_1} \sim \frac{1}{\sqrt{\Omega}} e^{\pm i \int^t \Omega(t') dt'}$$
$$= \frac{1}{\sqrt{\Omega_t / \Omega_0}} e^{\pm i \int^t \Omega_{t'} dt'}$$

This is a sinusoid with slowly changing amplitude.

b)

In physics there is a general concept of action

$$J = \oint pdq$$

which describes the adiabatic invariance of quasi-periodic behavior. In the limit when  $\Omega$  does not change at all, our problem admits an exact time invariance. To see this multiply Eq (1) by y'

$$y'y'' + \Omega^2 yy' = 0$$

and integrate to see

$$\frac{d}{dt}\left[\frac{y'^2}{2} + \Omega^2 \frac{y^2}{2}\right] = 0 \tag{2}$$

This is energy conservation. We can call the (almost) conserved quantity E. Leveraging this quasi-constant to write

$$y' = \sqrt{2E - (\Omega y)^2}$$

our action integral becomes

$$J = \oint y' dy = \sqrt{2E} \oint \sqrt{1 - \frac{(\Omega y)^2}{2E}} dy$$
$$= \frac{2E}{\Omega} \left( \oint \sqrt{1 - x^2} dx \right)$$

The cylcic integral is a geometric constant. <sup>2</sup> There the ratio of quasi-constants E which is slowing varying and  $\Omega$  which is slowly varying, can come out to be a constant which varies even more slowly. To quantify this we can expand Eq (2), putting back  $\Omega = \Omega(t)$  to say

$$E' = -\Omega'\Omega y^2$$

$$\oint \sqrt{1 - x^2} dx = \oint \cos^2 \theta \, d\theta = \pi$$

<sup>&</sup>lt;sup>2</sup>Let  $x = \sin \theta$ , then

This lets us Taylor expand

$$J = 2\pi \left(\frac{E}{\Omega}\right) = 2\pi \left[\frac{E_0 - (\Omega'\Omega y^2)t + \dots}{\Omega_0 + \Omega't + \dots}\right]$$
$$= 2\pi \frac{E_0}{\Omega_0} \left(1 - \frac{\Omega'\Omega y^2}{E_0}t + \dots\right) \left(1 - \frac{\Omega'}{\Omega}t + \dots\right)$$
$$= 2\pi \frac{E_0}{\Omega_0} \left[1 - \frac{\Omega'}{\Omega^2}t \left(\frac{\Omega^2 y^2}{E_0} + \Omega\right) + \dots\right]$$

We see again that, if  $S''/S'^2 = \Omega'/\Omega^2 \ll 1$ , then time variation is suppressed asymptotically.