This is a quick asymptotics problem on WKB. We're given an almost-simple harmonic oscillator with slowly varying frequency

$$
\begin{equation*}
y^{\prime \prime}+\Omega(t)^{2} y=0 \tag{1}
\end{equation*}
$$

a)

We would like to find a leading order asymptotic. WKB says we should guess solutions of the form $y=e^{S(t)}$. In this case

$$
\begin{gathered}
y^{\prime}=S^{\prime} y \\
y^{\prime \prime}=\left(S^{2}+S^{\prime \prime}\right) y
\end{gathered}
$$

Eliminating y from Eq (1) we see

$$
S^{\prime 2}+S^{\prime \prime}+\Omega^{2}=0
$$

So we suppose the dominant balance ${ }^{1}$

$$
S^{\prime 2} \sim-\Omega^{2}
$$

Solving this balance yields

$$
S^{\prime}= \pm i \Omega
$$

which we can integrate as a first order ODE

$$
S(t)= \pm i \int^{t} \Omega\left(t^{\prime}\right) d t^{\prime}
$$

So the solution is

$$
y(t)=e^{S(t)}=e^{ \pm i \int^{t} \Omega\left(t^{\prime}\right) d t^{\prime}}
$$

A sufficient condition for this to be true, is that the dominant balance holds. So we require $S^{2} \gg S^{\prime \prime}$, which translates to the condition

$$
\frac{\Omega^{\prime}}{\Omega^{2}} \ll 1
$$

Physically, this can be interpretted as saying the frequency $\Omega(t)$ changes on a time scale long compared to Ω^{-1}. We can go a step further by expanding

$$
S(t)=S_{0}+S_{1}
$$

where $S_{0}^{\prime}= \pm i \Omega$. Now the expansion becomes

$$
\left(S_{0}^{\prime}+S_{1}^{\prime}\right)^{2}+\left(S_{0}^{\prime \prime}+S_{1}^{\prime \prime}\right)+\Omega^{2}=0
$$

Subtracting off our 0th order solution leaves

$$
2 S_{0}^{\prime} S_{1}^{\prime}+S_{1}^{\prime \prime 2}+S_{0}^{\prime \prime}+S_{1}^{\prime \prime}=0
$$

[^0]Now we intuit that the dominant balance is

$$
2 S_{0}^{\prime} S_{1}^{\prime} \sim-S_{0}^{\prime \prime}
$$

This gives

$$
S_{1}^{\prime}=-\frac{S_{0}^{\prime \prime}}{2 S_{0}^{\prime}}=-\frac{\Omega^{\prime}}{2 \Omega}
$$

Therefore

$$
S_{1}(t)=-\frac{1}{2} \ln \left(\frac{\Omega(t)}{\Omega(0)}\right)
$$

Thus the leading order solution is

$$
\begin{aligned}
y(t)=e^{S_{0}+S_{1}} & \sim \frac{1}{\sqrt{\Omega}} e^{ \pm i \int^{t} \Omega\left(t^{\prime}\right) d t^{\prime}} \\
& =\frac{1}{\sqrt{\Omega_{t} / \Omega_{0}}} e^{ \pm i \int^{t} \Omega_{t^{\prime}} d t^{\prime}}
\end{aligned}
$$

This is a sinusoid with slowly changing amplitude.

b)

In physics there is a general concept of action

$$
J=\oint p d q
$$

which describes the adiabatic invariance of quasi-periodic behavior. In the limit when Ω does not change at all, our problem admits an exact time invariance. To see this multiply Eq (1) by y^{\prime}

$$
y^{\prime} y^{\prime \prime}+\Omega^{2} y y^{\prime}=0
$$

and integrate to see

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{y^{\prime 2}}{2}+\Omega^{2} \frac{y^{2}}{2}\right]=0 \tag{2}
\end{equation*}
$$

This is energy conservation. We can call the (almost) conserved quantity E. Leveraging this quasi-constant to write

$$
y^{\prime}=\sqrt{2 E-(\Omega y)^{2}}
$$

our action integral becomes

$$
\begin{aligned}
J=\oint y^{\prime} d y & =\sqrt{2 E} \oint \sqrt{1-\frac{(\Omega y)^{2}}{2 E}} d y \\
& =\frac{2 E}{\Omega}\left(\oint \sqrt{1-x^{2}} d x\right)
\end{aligned}
$$

The cylcic integral is a geometric constant. ${ }^{2}$ There the ratio of quasi-constants E which is slowing varying and Ω which is slowly varying, can come out to be a constant which varies even more slowly. To quantify this we can expand Eq (2), putting back $\Omega=\Omega(t)$ to say

$$
E^{\prime}=-\Omega^{\prime} \Omega y^{2}
$$

[^1]This lets us Taylor expand

$$
\begin{aligned}
J=2 \pi\left(\frac{E}{\Omega}\right) & =2 \pi\left[\frac{E_{0}-\left(\Omega^{\prime} \Omega y^{2}\right) t+\ldots}{\Omega_{0}+\Omega^{\prime} t+\ldots}\right] \\
& =2 \pi \frac{E_{0}}{\Omega_{0}}\left(1-\frac{\Omega^{\prime} \Omega y^{2}}{E_{0}} t+\ldots\right)\left(1-\frac{\Omega^{\prime}}{\Omega} t+\ldots\right) \\
& =2 \pi \frac{E_{0}}{\Omega_{0}}\left[1-\frac{\Omega^{\prime}}{\Omega^{2}} t\left(\frac{\Omega^{2} y^{2}}{E_{0}}+\Omega\right)+\ldots\right]
\end{aligned}
$$

We see again that, if $S^{\prime \prime} / S^{2}=\Omega^{\prime} / \Omega^{2} \ll 1$, then time variation is suppressed asymptotically.

[^0]: ${ }^{1}$ This comes from experience - the higher powers of lower derivatives usually end up being leading order. For example, suppose $S=x^{n}$. Then

 $$
 S^{\prime} \sim x^{n-1} \quad S^{\prime \prime} \sim x^{n-2} \quad S^{\prime 2} \sim x^{2(n-1)}
 $$

[^1]: ${ }^{2}$ Let $x=\sin \theta$, then

 $$
 \oint \sqrt{1-x^{2}} d x=\oint \cos ^{2} \theta d \theta=\pi
 $$

