We consider a system of electrons and ions with background field \mathbf{B}_{0} pointing along \hat{z}. The plasma is homogeneous along y and z, but there is both ∇n and ∇B in the \hat{x} direction. Let us start with the cold fluid dielectric

$$
\epsilon=\left(\begin{array}{ccc}
S & -i D & 0 \\
i D & S & 0 \\
0 & 0 & P
\end{array}\right)
$$

We can recall ${ }^{1}$

$$
\begin{aligned}
& S=1-\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}-\Omega_{s}^{2}} \\
& D=\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}-\Omega_{s}^{2}} \frac{\Omega_{s}}{\omega} \\
& \quad P=1-\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}}
\end{aligned}
$$

We consider waves that propagate in $k_{z}>0$, but the amplitude varies along the inhomogeneity

$$
\tilde{\mathbf{E}}=\mathbf{E}(x) e^{i\left(k_{z} z-\omega t\right)}
$$

We will take the MHD approximation $\delta=\omega / \Omega_{i} \ll 1$. This makes

$$
S=1+\frac{\omega_{p e}^{2}}{\Omega_{e}^{2}}+\frac{\omega_{p i}^{2}}{\Omega_{i}^{2}} \approx \frac{\omega_{p i}^{2}}{\Omega_{i}^{2}}
$$

since $\left|\Omega_{e}\right| \gg \Omega_{i}$. We also have

$$
\begin{aligned}
D & =-\sum_{s} \frac{\Omega_{s}}{\omega} \frac{\omega_{p s}^{2}}{\Omega_{s}^{2}}\left[1+\frac{\omega^{2}}{\Omega_{s}^{2}}+\ldots\right] \\
& =-\frac{1}{\omega} \sum_{s} \frac{\omega_{p s}^{2}}{\Omega_{s}}-\sum_{s} \frac{\omega_{p s}^{2}}{\Omega_{s}^{2}} \frac{\omega}{\Omega_{s}}
\end{aligned}
$$

The first term vanishes because of quasineutrality. ${ }^{2}$ Thus

$$
D=-\frac{\omega_{p i}^{2}}{\Omega_{i}^{2}} \frac{\omega}{\Omega_{i}}-\frac{\omega_{p e}^{2}}{\Omega_{e}^{2}} \frac{\omega}{\Omega_{e}} \approx-S \frac{\omega}{\Omega_{i}}
$$

We are told in the problem statement that $S \gg 1$. This means that $D=-\delta S$ is the product of a large and small number, so its actual size is yet undetermined.

$$
\begin{aligned}
& { }^{1} \text { It may help to remember the 'sum' and 'difference' mnemonic } \\
& \qquad S=\frac{R+L}{2} \\
& \qquad R, L=1-\sum_{s} \frac{\omega_{p s}^{2}}{\omega\left(\omega \pm \Omega_{s}\right)}
\end{aligned}
$$

where 'right' and 'left' correspond to handedness of magnetic gyration. Electrons are right, $\Omega_{e}<0$, so resonance happens iwth the $(+)$. Ions are left, $\Omega_{i}>0$, so resonance corresponds the $(-)$.

$$
\sum_{s} \frac{\omega_{p s}^{2}}{\Omega_{s}}=\sum_{s}\left(\frac{4 \pi q_{s}^{2} n_{s}}{m_{s}}\right)\left(\frac{m_{s} c}{q_{s} B}\right)=\frac{4 \pi c}{B} \sum_{s} q_{s} n_{s}=0
$$

a) Alfven Waves

What does it mean for $S \gg 1$? Consider

$$
\frac{\omega_{p i}^{2}}{\Omega_{i}^{2}}=\left(\frac{4 \pi e^{2} n_{i}}{m_{i}}\right)\left(\frac{m_{i}^{2}}{e^{2} B_{0}^{2}}\right)=\frac{4 \pi m_{i} n_{i}}{B_{0}^{2}}=\left(\frac{c}{v_{A}}\right)^{2}
$$

This quantity is defined γ_{A} in the notes. It is like a refractive index $n=c k / \omega$ for Alfven waves. $S \approx \gamma_{A}$ is large because the Alfven velocity is small compared to the spped of light. Even though electrostatic oscillations become stationary as $\omega \rightarrow 0$, the plasma is responding through magnetic vibrations. This is because particles, tied to the magnetic field lines, see an oscillating electric field in the co-moving frame. This give rise to polarization current.

b) Dispersion Relation

Starting from Maxwell's equations in matter

$$
\begin{gathered}
\nabla \times \mathbf{H}=\frac{4 \pi}{c} \mathbf{J}+\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} \\
\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}
\end{gathered}
$$

We can use the constitutive reltaions $\mathbf{D}=\epsilon \mathbf{E}$ and $\mathbf{H}=\frac{\mathbf{B}}{\mu} \approx \mathbf{B}$ to write

$$
-\nabla \times(\nabla \times \mathbf{E})-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \epsilon \mathbf{E}=\frac{4 \pi}{c^{2}} \frac{\partial \mathbf{J}}{\partial t}
$$

Since we're interested in waves, we take the homogeneous solution. ${ }^{3}$ We're also told that E_{z} is neglible, because P is large. ${ }^{4}$ This gives

$$
\left[-\left(\begin{array}{ccc}
\frac{d^{2}}{d x^{2}} & 0 & i k_{z} \frac{d}{d x} \\
0 & 0 & 0 \\
i k_{z} \frac{d}{d x} & 0 & -k_{z}^{2}
\end{array}\right)+\left(\frac{d^{2}}{d x^{2}}-k_{z}^{2}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{\omega^{2}}{c^{2}}\left(\begin{array}{ccc}
S & -i D & 0 \\
i D & S & 0 \\
0 & 0 & P
\end{array}\right)\right]\left(\begin{array}{c}
E_{x} \\
E_{y} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We can convert to dimensionless refractive index $N=\frac{c k}{\omega}$

$$
\left(\begin{array}{ccc}
S-N_{z}^{2} & -i D & N_{z} \frac{c}{i \omega} \frac{d}{d x} \\
i D & S-N_{z}^{2}+\frac{c^{2}}{\omega^{2}} \frac{d^{2}}{d x^{2}} & 0 \\
N_{z} \frac{c}{i \omega} \frac{d}{d x} & 0 & P+\frac{c^{2}}{\omega^{2}} \frac{d^{2}}{d x^{2}}
\end{array}\right)\left(\begin{array}{c}
E_{x} \\
E_{y} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The top two rows show

$$
\left(S-N_{z}^{2}\right) E_{x}=i D E_{y}
$$

$$
\begin{aligned}
& { }^{3} \text { This is just } \\
& \text { except we used } N=\frac{c}{\omega}\left(\frac{1}{i} \frac{d}{d x}, 0, k_{z}\right) . \\
& D_{E M}=|N\rangle\langle N|-\langle N \mid N\rangle+\epsilon=0 \\
& { }^{4} \text { This makes sense because } \\
& \\
&
\end{aligned}
$$

diverges for $\omega \rightarrow 0$. But the dispersion relation (3rd row) gives

$$
P E_{z}=N_{\perp}^{2} E_{z}-N_{\|} N_{\perp} E_{x}
$$

The RHS in finite. To balance P, E_{z} must be small (but not $0!$). This lets us neglect the parallel component and focus on the $2 \mathrm{x} 2 E_{\perp}$ matrix going forward.

$$
-i D E_{x}=\left(\frac{c^{2}}{\omega^{2}} \frac{d^{2}}{d x^{2}}+S-N_{z}^{2}\right) E_{y}
$$

and eliminating E_{x} yields the dispersion relation we desire

$$
\begin{equation*}
\left(\frac{c^{2}}{\omega^{2}} \frac{d^{2}}{d x^{2}}+S-N_{z}^{2}-\frac{D^{2}}{S-N_{z}^{2}}\right) E_{y}=0 \tag{1}
\end{equation*}
$$

c) Alfven Resonance

Now let us give more detail to the inhomogeneity. Suppose

$$
S=\left(1+\frac{x}{L}\right) N_{z}^{2}
$$

We see that as $x \rightarrow 0$ we have $S \rightarrow N_{z}^{2}$, which creates a resonance in Eq (1). This is called the Alfven resonance. It is related to the L-mode and ion cyclotron resonance, but occurs for $\omega<\Omega_{i}$ and both $N_{\|}$and N_{\perp} components play a role. We would like to study what happens when the resonance is approached from above and below $(x>0$ and $x<0)$. The distance to resonance is parametrized by

$$
S-N_{z}^{2}=\frac{x}{L} N_{z}^{2}
$$

Also

$$
D \approx-\frac{\omega}{\Omega_{i}} S=-\delta\left(1+\frac{x}{L}\right) N_{z}^{2}
$$

Let $\rho=x / L$ be a dimensionless position. Considering $E_{y} \neq 0$, Eq (1) becomes

$$
\left(\frac{c}{\omega L}\right)^{2} \frac{d^{2}}{d \rho^{2}}+\rho N_{z}^{2}-\frac{D^{2}}{\rho N_{z}^{2}}=0
$$

This gives

$$
0=\left(\rho N_{z}^{2}\right) \frac{d^{2}}{d \rho^{2}}+\frac{\rho^{2} N_{z}^{4}-D^{2}}{\left(\frac{c}{\omega L}\right)^{2}}
$$

We should substitute D because it has a (suppressed) x dependence

$$
0=\rho \frac{d^{2}}{d \rho^{2}}+\frac{\rho^{2}-\delta^{2}(1+\rho)^{2}}{\left(\frac{c / \omega L}{N_{z}}\right)^{2}}
$$

Next we make an asymptotic approximation. Since we're interested in the resonance at $x \rightarrow 0$, it is natural to set $x \ll L$ such that $1+\rho \approx 1$. Then

$$
0=\rho \frac{d^{2}}{d \rho^{2}}+\frac{(\rho / \delta)^{2}-1}{\left(\frac{c / \omega L}{\delta N_{z}}\right)^{2}}
$$

This motivates defining a stretched parameter

$$
\xi=\frac{\rho}{\delta}=\frac{x}{L} \frac{\Omega_{i}}{\omega}
$$

The Alfven resonance occurs in an asymptotic boundary layer. This is set by the the density and magnetic field gradients, which S accesses through $\omega_{p i}$ and Ω_{i} respectively. Now scaling the entire equation by δ we find

$$
0=\xi \frac{d^{2}}{d \xi^{2}}+\delta^{3}\left(k_{z} L\right)^{2}\left(\xi^{2}-1\right)
$$

where we have expanded $\left(\frac{\omega L}{c}\right) N_{z}=k_{z} L$. Defining

$$
\alpha^{2}=\frac{1}{2 \delta^{3}\left(k_{z} L\right)^{2}}
$$

yields

$$
\begin{equation*}
\left(\xi \frac{d^{2}}{d \xi^{2}}+\frac{\xi^{2}-1}{2 \alpha^{2}}\right) E_{y}=0 \tag{2}
\end{equation*}
$$

which is what we set out to show. We will use this as the governing equation going forward. Let us take a geometric optics approximation

$$
\frac{1}{i} \frac{d}{d \xi}=k_{\xi}
$$

This sets

$$
-k_{\xi}^{2} \xi+\frac{\xi^{2}-1}{2 \alpha^{2}}=0
$$

which we can solve to find

$$
k_{\xi}^{2}=\frac{1}{2 \alpha^{2}}\left(\xi-\frac{1}{\xi}\right)
$$

In the k_{ξ}^{2} plot (left) we see two regions of propagation separated by a cut-off and a resonance. The cut-off layer has a width $\Delta x=\frac{\omega}{\Omega_{i}} L$. This suggests for sufficiently small δ we might find mode conversion. In the $\pm k_{\xi}$ plot (right) we see two branches, which each experience cut off (reflection) at $\rho= \pm 1$. The algebraic

$$
k_{x}^{2}=\frac{x^{2}-1}{2 \sigma^{2} x}=\frac{1}{2 x^{2}}\left(x-\frac{1}{x}\right) \quad K_{x}= \pm \frac{1}{\alpha} \sqrt{\frac{x^{2}-1}{2 x}}
$$

form for these branches can be found by solving the inverse equation ${ }^{5}$

$$
\xi^{2}-2\left(k_{\xi} \alpha\right)^{2} \xi-1=0
$$

which shows

$$
\begin{aligned}
\xi & =\left(k_{\xi} \alpha\right)^{2} \pm \sqrt{1+\left(k_{\xi} \alpha\right)^{4}} \\
& =\bar{\xi} \pm \Delta
\end{aligned}
$$

Here we should emphasize that both pieces are functions of k_{ξ}

$$
\begin{gathered}
\bar{\xi}\left(k_{\xi}\right)=\left(k_{\xi} \alpha\right)^{2} \\
\Delta \xi\left(k_{\xi}\right)=\sqrt{1+\left(k_{\xi} \alpha\right)^{4}}
\end{gathered}
$$

[^0]
d) action flow

We would like to find the x-direction group velocity

$$
v_{g, x}=\frac{\partial \omega}{\partial k_{\xi}}
$$

Starting from the dispersion function

$$
D\left(\omega, k_{\xi}\right)=-k_{\xi}^{2} \xi+\frac{\xi^{2}-1}{2 \alpha^{2}}=0
$$

We can isolate ω by solving the frequency dependence in $\alpha^{-2}=2\left(k_{z} L\right)^{2} \delta^{3} .{ }^{6}$ This yields

$$
\left(k_{z} L\right)^{2}\left(\frac{\omega}{\Omega_{i}}\right)^{3}=\frac{1}{2 \alpha^{2}}=\frac{k_{\xi}^{2} \xi}{\xi^{2}-1}
$$

or

$$
\omega=k_{\xi}^{2 / 3} \Omega_{i}\left(\frac{\xi}{\left(k_{z} L\right)^{2}\left(\xi^{2}-1\right)}\right)^{1 / 3}
$$

From here taking asimple derivitive shows

$$
v_{g, \xi}=\frac{2}{3} \Omega_{i}\left(\frac{\xi}{k_{\xi}}\right)^{1 / 3}\left[\left(k_{z} L\right)^{2}\left(\xi^{2}-1\right)\right]^{-1 / 3}
$$

Thus the direction of progation depends on the sign of ξ / k_{ξ} as well as the sign of $\left(\xi^{2}-1\right)$. Since $\xi^{2} \geq 1$ for the upper branch and $\xi^{2}<1$ for the lower branch, we find that both both branches propagate toward $-k_{\xi}$. We can see that the $(+)$ branch propagates from above the boundary layer $(\xi>1)$ in quadrant I, hits the

cut off at $\xi=1$, and reflects into quadrant II. Below the boundary layer $(\xi<0)$, the $(-)$ branch propagates away from the resonance $(k<0)$ in quadrant III, reflects at $\xi=-1$, and propagates toward the cut off in quardrant IV. We can interpret this to mean that the action propagates in opposite directions for the

[^1]two branches. ${ }^{7}$ Mode conversion occurs if part of wave incoming from I reflects into II, while part jumps branches continuing toward resonance in IV. To identify the branches it is helpful to consider the ratio
$$
\beta=\frac{S-N_{z}^{2}}{D}=\frac{\rho}{\delta(\rho-1)}
$$

For $\rho>1$ we see $\beta \sim \delta^{-1} \gg 1$. This $(+)$ branch corresponds to the fast CAW. ${ }^{8}$ For $\rho \rightarrow 0^{-}$we see that $\beta \rightarrow 0^{+} \ll 1 .{ }^{9}$ This $(-)$ branch corresponds to the SAW, and it is the one which ultimately rises to the Alfven resonance.

e) mode conversion

Now we're given a Schrodinger like equation

$$
i \frac{d}{d k_{\xi}}\binom{g_{1}}{g_{2}}=\left(\begin{array}{cc}
s & -i \\
i & -s
\end{array}\right)\binom{g_{1}}{g_{2}}
$$

where $s=\left(k_{\xi} \alpha\right)^{2}$ as before, and $g_{1,2} \propto e^{-i \theta_{1,2}\left(k_{\xi}\right)} .{ }^{10}$ Let us define $\zeta_{1,2}=\frac{d \theta_{1,2}}{d k_{\xi}}$ We see that the Schrodinger equation is an eigenvalue equation

$$
H \mathbf{g}=i \frac{d \mathbf{g}}{d k_{\xi}}=i\binom{-i \theta_{1}^{\prime} g_{1}}{-i \theta_{2}^{\prime} g_{2}}=\binom{\zeta_{1} g_{1}}{\zeta_{2} g_{2}}
$$

So finding $\zeta_{1,2}$ is equivalent to finding the eigenvalues.

$$
0=\operatorname{det}\left(\begin{array}{cc}
s-\lambda & -i \\
i & -(s+\lambda)
\end{array}\right)=\lambda^{2}-s^{2}-1
$$

This means the eigenvalues are

$$
\lambda_{ \pm}= \pm \sqrt{1+s^{2}}
$$

which correspond to the values $\Delta\left(k_{\xi}\right)$ from our dispersion relation $\xi=\bar{\xi} \pm \Delta$. Without loss of generality, let us assign

$$
\begin{gathered}
\zeta_{1}=\lambda_{+}=\sqrt{1+s^{2}} \\
\zeta_{2}=\lambda_{-}=-\sqrt{1+s^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& { }^{7} \text { Recall } \\
& \frac{\partial I}{\partial t}+\nabla \cdot\left(\mathbf{v}_{\mathbf{g}} I\right)=2 \gamma I
\end{aligned}
$$

[^2]where Θ is the anti-derivative of \bar{x}
$$
\Theta\left(k_{\xi}\right)=\int \bar{x}\left(k_{\xi}\right) d k_{\xi}
$$

Therefore the frequency gap is

$$
\left|\zeta_{1}-\zeta_{2}\right|=2|\lambda|=2 \sqrt{1+s^{2}}
$$

Since $\zeta_{1,2}=\lambda_{ \pm}= \pm \Delta$, we can interpret this to be the separation of modes in k_{ξ}-space. We can speculate that mode conversation is more likely when this separation is smaller. Now it remains only to find the eigenvectors

$$
\binom{s g_{1}-i g_{2}}{i g_{1}-s g_{2}}=H \mathbf{g}=\binom{\zeta_{1} g_{1}}{\zeta_{2} g_{2}}
$$

After some algebra we find the orthonormal eigenvectors associated with these eigenvalues are

$$
\begin{gathered}
h_{+}=\binom{-i \sqrt{\frac{1+\kappa}{2}}}{\sqrt{\frac{1-\kappa}{2}}}=\binom{-i u_{+}}{u_{-}} \\
h_{-}=\binom{i \sqrt{\frac{1-\kappa}{2}}}{\sqrt{\frac{1+\kappa}{2}}}=\binom{i u_{-}}{u_{+}}
\end{gathered}
$$

with $\kappa=s / \Delta=\frac{s}{\sqrt{1+s^{2}}}$ and $u_{ \pm}=\sqrt{(1 \pm \kappa) / 2}$. Let us study the following limits

$$
\begin{array}{rrr}
s \rightarrow 0 & s \rightarrow \infty & s \rightarrow-\infty \\
\kappa \rightarrow 0 & \kappa \rightarrow 1 & \kappa \rightarrow-1 \\
u_{+} \rightarrow 1 / \sqrt{2} & u_{+} \rightarrow 1 & u_{+} \rightarrow 0 \\
u_{-} \rightarrow 1 / \sqrt{2} & u_{-} \rightarrow 0 & u_{-} \rightarrow 1
\end{array}
$$

In our system ${ }^{11}$

$$
s=\left(k_{\xi} \alpha\right)^{2}=\frac{1}{2 \delta}\left(\frac{N_{\perp}}{N_{\|}}\right)^{2} \geq 0
$$

We see that for large $\alpha(s \rightarrow+\infty)$ the incoming wave stays on the same branch. But for small $\alpha(s \rightarrow 0)$ the g_{1} and g_{2} amplitudes are equal. Another way to look at this is that in the limit $s \rightarrow 0$ the matrix becomes anti-symmetric

$$
M_{s \rightarrow 0}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

This means g_{1} and g_{2} interchange places. So if we interpret the initial state to be $|i\rangle=\binom{1}{0}$ for example, this corresponds to a 100% probability of jumping modes. Therefore mode conversion is more likely at smaller values of α i.e. the $N_{\|}$is low, so the wave spends more time at the boundary layer $S(x=0)$. Conversely if α is large, $N_{\|}$is large, and the wave passes right through the boundary layer without much mode conversion.

$$
\begin{aligned}
& { }^{11} \text { Note } \\
& \xi=\frac{\rho}{\delta}=\frac{x}{\delta L} \\
& \text { implies } \\
& k_{\xi}=\frac{1}{i} \frac{d}{d \xi}=\frac{\delta L}{i} \frac{d}{d x}=\delta L k_{x} \\
& \text { which shows } \\
& s=\left(k_{\xi} \alpha\right)^{2}=\frac{k_{\xi}^{2}}{2 \delta^{3}\left(k_{z} L\right)^{2}}=\frac{1}{2 \delta^{3} L^{2}}\left(\frac{k_{\xi}}{k_{z}}\right)^{2}=\frac{1}{2 \delta}\left(\frac{k_{x}}{k_{z}}\right)^{2}=\frac{1}{2 \delta}\left(\frac{N_{\perp}}{N_{\|}}\right)^{2}
\end{aligned}
$$

[^0]: ${ }^{5}$ the problem statement asks to plot both $k(\xi)$ and $\xi(k)$, but I will defer the latter to part (d).

[^1]: ${ }^{6}$ this path was found by T. Rubin.

[^2]: ${ }^{8}$ For cold fluid waves there is no slow CAW at low frequency. because $C_{S} \rightarrow 0$. Both SAW and slow CAW can never propagate purely $k \perp B$, there always needs to be some parallel component, but fast CAW can. At $\theta=\pi / 2$ the fast CAW is the low frequency limit of X -modes. At $\theta=0$ the fast CAW is the low frequency limit of R-modes, and the SAW is the low frequncy limit of L-modes.
 ${ }^{9}$ Let us note that $\beta \approx 1$ when $\rho \sim-\delta(\xi=-1)$, and we have

 $$
 S-D=L \approx N_{z}^{2}
 $$

 This is called "the left-hand cutoff". How can this be connected to the L-mode branch $N_{\|}^{2}-L=0$ from Appleton-Hartree, which has no cutoff?
 ${ }^{10}$ For background consider

 $$
 g_{1}\left(k_{\xi}\right)=e^{i \Theta\left(k_{\xi}\right)} \int E_{y}(x) e^{i k_{x} x} d x
 $$

