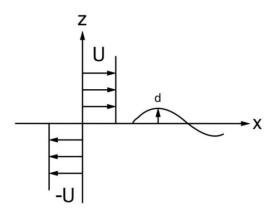
I.7 Kelvin-Helmholtz Instability [40 pts]

In this problem, you will be asked to derive minimum magnetic field to stabilize Kelvin-Helmholtz instability in MHD. Suppose that an incompressible, ideal fluid has a flow shear at a sharp boundary at z = 0 as shown in the figure where a proper frame is chosen so that $\mathbf{U} = (U, 0, 0)$ at z > 0 while $\mathbf{U} = (-U, 0, 0)$ at z < 0.



(a) [8 pts] Assuming the perturbation velocity, $\mathbf{v}(x, z)$, is irrotational and in the (x, z) plane, so that a velocity potential, $\phi(x, z)$, is allowed to represent \mathbf{v} :

$$\mathbf{v} = \nabla \phi. \tag{2}$$

When $\phi = \phi_1(z)e^{ik(x-ct)}$ at z > 0 and $\phi = \phi_2(z)e^{ik(x-ct)}$ at z < 0, derive equations for ϕ_1 and ϕ_2 and find their solutions. Here, k is real and c is complex. Let $\alpha \equiv \phi_1(z \to +0)$ and $\beta \equiv \phi_2(z \to -0)$.

(b) [8 pts] As shown in the figure, suppose that the boundary perturbation is given by $\xi = de^{ik(x-ct)}$ where d is the amplitude. Use the kinematic boundary condition of

$$v_z = \frac{D\xi}{Dt} \tag{3}$$

for both $z \to +0$ and $z \to -0$ to express α and β , respectively, in terms of d. Here D/Dt denotes total derivative.

(c) [8 pts] Express perturbed pressure, $p_1[\equiv p(z \to +0)]$, in terms of α and $p_2[\equiv p(z \to -0)]$, in terms of β , respectively. Use the dynamic boundary condition,

$$p_1 = p_2, (4)$$

to derive dispersion relation for Kelvin-Helmholtz instability. When is it unstable?

(d) [8 pts] Impose a uniform magnetic field B_0 along the flow direction. Express the perturbed magnetic field in the x direction, B_x , in terms of ϕ for z > 0 and for z < 0, respectively. [Vector identity: $\nabla \times (\mathbf{a} \times \mathbf{b}) = \mathbf{a}(\nabla \cdot \mathbf{b}) - \mathbf{b}(\nabla \cdot \mathbf{a}) + (\mathbf{b} \cdot \nabla)\mathbf{a} - (\mathbf{a} \cdot \nabla)\mathbf{b}$.]

a)
$$\nabla k U = 0$$
 so $U = \nabla \phi(x,z)$ See Hantho's Let φ
 $\nabla k U = 0$ so $\nabla^2 \phi = 0$
 $\nabla \psi = 0$ = $\frac{\partial \phi(x)}{\partial x^2} - k^2 \phi(x) = 0$
 $\phi(x) = \left(Pe^{|K|Z} + \alpha e^{-|K|Z}\right) e^{-|K|Z}$
 $V_x = \frac{\partial z}{\partial x}$
 $V_x = \frac{\partial z}{\partial x}$

$$P_{1} = P_{2} \qquad 50$$

$$P_{2} = P_{3} \qquad 50$$

$$P_{3} = P_{4} \qquad 50$$

$$P_{4} = P_{5} \qquad 50$$

$$P_{5} = P_{5} \qquad 50$$

$$P_{7} = P_{2} \qquad 50$$

$$P_{7} = P_{2} \qquad 50$$

$$P_{8} = P_{8} \qquad 60$$

$$P_{8} =$$

We get
$$\frac{\partial \xi}{\partial t} + \frac{\partial \xi}{\partial x} - \frac{\partial B_{x}}{\partial x} = -\frac{P}{P} - \frac{\partial B_{x}}{\partial \mu} = \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} - \frac{\partial B_{x}}{\partial x} + \frac{\partial \xi}{\partial x} - \frac{\partial B_{x}}{\partial x} + \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{$$