1. \(N_i N_j - N^2 S_{ij} + C_{ij} = 0 \) in general
 (i) resonance is necessary (but not sufficient) condition for electrostatic wave.
 no resonance (see Qn 2) \(\rightarrow \) not electrostatic

2. Rewrite \(N_i^2 = \frac{z e^2 \omega^2}{V_c^2 c^2} \left(1 - \frac{5 \alpha^2}{z^2} \right) \)
 No choice of \(C \) will lead \(N_i^2 \rightarrow \infty \).
 Thus there is no resonance.

3. Easily see what at \(\omega^2 = 5 \alpha^2 \):
 \(\omega^2 > 5 \alpha^2 \) normal propagation (\(N_i^2 > 0 \))
 \(\omega^2 < 5 \alpha^2 \) must have \(N_i^2 < 0 \).
 Crossover between propagation and attenuation gives cutoff.