1. \(\delta (W - \mu k) = 0 \)
\[\int B \cdot dB + v \cdot dv - \mu v \cdot dB - \mu v \cdot B = 0 \]
\[\int (B - \mu v) \cdot dB + (v - \mu B) \cdot dv = 0 \]
Since \(dv, dB \) are arbitrary, in order to vanish the integrand it must be that \(B - \mu v = 0 \), \(v - \mu B = 0 \) \(\Rightarrow \mu = 1 \), \(v = 2B \).

2. \(\delta (W - \lambda H) = 0 \)
\[\int v \cdot dv + B \cdot SB - 2A \cdot SB - \frac{1}{2} B \cdot SA = 0 \]
Note \(B \cdot SA = (\nabla \times A) \cdot SA = A \cdot \nabla \times SA - \nabla \cdot (SA \times A) \)
Note \(\int \nabla \cdot (SA \times A) = \oint (SA \times A) \cdot da = 0 \) if \(SA \cdot da = 0 \)
\[\Rightarrow \int v \cdot dv + (B - \lambda A) \cdot SB = 0 \]
\(\Rightarrow v = 0 \), \(B = \lambda A \), so \(\nabla \times B = \lambda A \times A = \lambda B \)
Recognize this as a force-free equilibrium.

3. \(\delta (W - \mu k - \lambda H) = 0 \)
\[\int B \cdot SB + v \cdot dv - \mu v \cdot dB - \mu v \cdot B - \lambda A \cdot SB = 0 \]
\[\int (B - \mu v) \cdot dB + (v - \mu B - \lambda A) \cdot SB = 0 \]
\(\Rightarrow v = \mu B \), \(B = \frac{\lambda A}{1 - \mu^2 A} \) (still force free)

21. \(\lambda \to 0 \Rightarrow B - \mu^2 B = 0 \Rightarrow B = 1 \) identical to (a)
\(\mu \to 0 \Rightarrow v = 0 \), \(B = \lambda A \) identical to part (b)
\(\lambda \to 0 \) and \(\mu \to 0 \) \(\Rightarrow v = 0 \), \(B = 0 \)
(uncoupled minimization of W will just kill off both fields).