a. Surface defined by \(\hat{\mathbf{N}} \cdot \mathbf{B} = 0 \) \(\forall \hat{\mathbf{N}} \in \mathcal{S} \).
Surfaces which \(\hat{\mathbf{B}} \) vectors lie tangent to.

b. Small externally applied perturbation to \(\mathbf{B} \) field, intended
Resonant - same behavior as background \(\mathbf{B} \) field \(\mathbf{H} = \mathbf{J} \times \mathbf{A} \) \(\mathbf{A} \cdot \mathbf{B} \)

c. On a external surface, the fields are special in that the field lines are closed. For \(\mathcal{S} \& \mathcal{Q} \), the field lines are ergodic and space-filling.
So a RMP can very easily perturb the surface from a rational to irrational one, leading to very different transport properties. (expand)